| Адрес этой страницы (вложенность) в справочнике dpva.ru: главная страница / / Техническая информация / / Материалы / / Строительные материалы. Физические, механические и теплотехнические свойства. / / СНиП 23-02 Расчетные теплотехнические показатели минеральных ват, пеностекла, газостекла, стекловаты, Роквула, URSA, теплоемкость, теплопроводность и теплоусвоение в зависимости от плотности и влажности, паропроницаемость. Поделиться:
|
Теплопроводность минваты: что такое коэффициент теплопроводности?
Теплопроводность минваты находится в прямой зависимости от состава и объемного веса материала, разобраться с техническими характеристиками необходимо до закупки утеплителя.
Что такое минеральная вата?
Общим названием «минеральная вата» обозначают группу теплоизоляторов, произведенных из волокон минерального происхождения – стекла, кварцевого песка, камня группы базальтов и шлака. Производство у каждой фирмы имеет некоторое отличие, однако общим является получение волокна из расплава исходного сырья и добавление связующего для формования конечного продукта.
Теплоизоляционные материалы из минеральной ваты выпускают в виде рулонов, матов, плит и цилиндров. Минимальное количество связующего в рулонах, максимальное – в плитах, его тем больше, чем больше объемный вес, жесткость и механическая прочность утеплителя. Основные качества минераловатных утеплителей:
- Малая теплопроводность.
- Высокая механическая стойкость.
- Паропроницаемость.
- Химическая стойкость.
- Экологичность.
- Устойчивость к высоким и низким температурам.
- Шумопоглощение.
- Огнестойкость.
- Долговечность.
Немаловажным свойством минераловатных теплоизоляторов является то обстоятельство, что грызуны не используют эти материалы для гнездования, в отличие от пенополистирола.
Теплопроводность – главный показатель эффективности утеплителя
Коэффициент теплопроводности измеряется в Ваттах, деленных на метр умноженный на градус Кельвина и показывает количество перенесенного через материал тепла. Чем этот коэффициент ниже, тем более эффективным будет утепление, тем более тонкий слой теплоизолятора нужен для сохранения тепла в помещении.
Популярность теплоизоляционных материалов из минеральной ваты обусловлена отличным показателем теплопроводности. В зависимости от вида материала, состава и объемного веса теплопроводность минераловатных плит варьируется от 0, 030 до 0,052 Вт/м*К. в таблице представлены данные по утеплителям из стекловаты:
В жестких плитах из стекловаты количество связующего доходит до 10%, что снижает уровень огнестойкости: показатель Г1 говорит о том, что материал не поддерживает горения, то есть обладает свойством самозатухания.
Коэффициент теплопроводности необходим для расчета требуемой толщины теплоизоляции.
Основные производители
Наиболее качественный товар на рынок утеплителей поставляют компании:
- ISOVER – на основе стекловаты и каменной ваты.
- KNAUF – на основе каменной ваты.
- URSA – на основе стекловаты.
- PAROC – на основе базальта.
- NOBASIL- на основе базальта.
- Технониколь – на основе базальта.
Качество материалов этих фирм подтверждено соответствующими сертификатами. Эти фирмы производят весь возможный ассортимент теплоизолирующих изделий – рулоны, маты, плиты и цилиндры.
Производством утеплителей из шлака крупные компании не занимаются, так как в сырье возможны вредные примеси, а качество продукции оставляет желать лучшего – технология не модернизировалась со времен СССР.
Наибольшие нарекания на качество минераловатных утеплителей вызывал состав связующего, в частности наличие в составе формальдегида, вредного для здоровья человека и микроскопическая пыль, образующаяся при резке плит.
Однако технологии не стоят на месте, процесс производства усовершенствовался, и сейчас в качестве связующего применяют безопасный акрил (URSA) или натуральные компоненты по технологии ECOSE (KNAUF), что полностью исключает вредные воздействия. Волокно, служащее основой для утеплителя, в настоящее время обладает упругостью и практически не образует пыли при обработке.
Материалы данных компаний рекомендованы для применения в детских учреждениях.
Применение утеплителей
Каждый из видов теплоизоляторов должен использоваться в соответствии с рекомендацией производителя:
- Рулон – в конструкциях, где они не несут нагрузку.
- Мат – для утепления каркасных конструкций.
- Мат – для утепления стен в системе «вентилируемый фасад».
- Плит – для звукоизоляции.
- Плита – для звукоизоляции пола.
- Плита – для скатных кровель.
- Плита – для нижнего слоя в утеплении плоских кровель.
- Жесткая плита – для верхнего слоя в утеплении плоских кровель.
- Жесткая плита – для утепления стен в штукатурной системе.
- Цилиндр, мат – для изоляции труб и конструкций сложной формы.
Соответственно каждый производитель разрабатывает свои инструкции по монтажу утеплителей в зависимости от назначения и конструкции.
Заключение
Коэффициент теплопроводности утеплителя – важнейший показатель эффективности. Сравнивая минераловатные утеплители с другими строительными материалами, легко подобрать материал, удовлетворяющий сразу трем показателям, важным для индивидуального застройщика – эффективность – цена – качество.
Как выбрать теплоизоляцию | СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ
Тепло-изоляция… Оградить и сохранить тепло Вашего дома, изолировать его от полярной стужи – работа у теплоизоляции очень ответственная! В серии статей про выбор теплоизоляции, ее монтаж и работу в конструкции, мы поможем Вам сэкономить трижды:
- при покупке,
- на затратах на отопление,
- на отсутствии необходимости переделок.
Чтобы оперативно получать уведомления о публикации информации, подпишитесь на нашу группу ВК https://vk.com/stroymag89
- Теплопроводность
- Плотность теплоизоляции. Мифы и практика.
- Физические свойства теплоизоляции, сжимаемость, прочность на отрыв – где это нужно, а где бесполезно
- Паропроницаемость теплоизоляции.
- Теплопроводность
Коэффициент теплопроводности – самая главная характеристика теплоизоляционных материалов. Коэффициент теплопроводности обозначается буквой λ (лямбда). Казалось бы, чего проще – бери «лямбду», сравнивай и решай, что теплее. Тем более что благодаря маркетологам (ох уж эти маркетологи!) многие производители одно время включали значение лямбды в название продукции. Например «Маты КНАУФ Инсулейшн TR 037» — вроде указан коэффициент теплопроводности 0.037 Вт/м*С° ?
Но на практике для характеристики теплоизоляции определяются несколько коэффициентов теплопроводности, соответствующих разным условиям. Например: λ10, λ25, λА, λБ – означают теплопроводность для разных условий влажности. Из этого перечня лямбда с индексом 10 (ее еще называют «сухая») будет обладать наименьшим значением. Ее обычно и закрепляют в названии продукции.
В названии теплоизоляции существуют различные «моды». Например, лет 10 назад в название теплоизоляции включали цифры, означающие плотность. Например, ППЖ-200, Маты УРСА М-11, ПСБС-25. Про особенности суждений о свойствах теплоизоляции по ее плотности у нас есть отдельная статья.
Затем пошла «мода» на включение в название теплоизоляционных материалов значения лямбды «ИЗОВЕР КТ-40», УРСА Терра 34»
Сейчас — «мода» на названия по сфере применения. Причем один вид продукции, сошедшей с конвейера, может попасть в разные упаковки – одна подчеркнет его шумоизолирующие свойства, другая — что его можно применить в каркасную стену, а третья — в мансарду. Хотя по факту это — один и тот же материал.
Но в реальных теплотехнических расчетах для зданий в ЯНАО, как и во многих других регионах нашей страны, используется коэффициент λБ. А он будет существенно ниже – например, для указанных матов «КНАУФ Инсулейшн TR 037» λБ равен 0,042 Вт/м*С° – отличается от «сухой» лямбды на 13%!
Отличие сухой лябмды от реальной будет тем больше, чем больше материал адсорбирует влаги из воздуха. Меньше всего адсорбируют влагу «закрытопористые» материалы – например, экструдированный пенополистирол, либо с обработкой гидрофобными материалами (например, KNAUF пишет Aquastatic, URSA – индекс Г – гидрофобизатор)
Сравним два родственных материала: Обычный белый «пенопласт» пенополистирольные блоки ПСБС и экструдированный пенополистирол (выпускается под марками URSA XPS, Пеноплекс и др.).
Разница между сухой лямбдой (0,036-0,041 Вт/м*С° — для разной плотности) и λБ (0,044-0,050 Вт/м*С°) у обычного пенопласта составляет 18%.
А у экструдии – 0,031 и 0,033 – всего 6%.
Исходное сырье одно. Но экструдия — «закрытопористый» материал и плохо пропускает пары воды. А ПСБС воду «любит», и гидрофобной обработки у него нет. Поэтому и такая разница.
Всегда ищите лямбду Б — λБ! Она указана у всех производителей, но не всегда на виду.
Приводим коэффициент λБ а популярные в Салехарде материалы.
материал | λБ |
URSA XPS N-III-G4 | 0,033 |
RW ВЕНТИ БАТТС оптима | 0,038 |
URSA GEO П-30 | 0,039 |
Техновент Стандарт | 0,039 |
URSA GEO П-20 | 0,040 |
RW ВЕНТИ БАТТС, ВБД | 0,040 |
RW ЛАЙТ БАТТС СКАНДИК | 0,041 |
URSA PureOne 34PN | 0,041 |
URSA КАРКАС | 0,042 |
URSA GEO М-25 | 0,042 |
KNAUF TR 037, TS037 | 0,043 |
URSA GEO M-11 | 0,046 |
ПСБС-25 | 0,044-0,050 |
конструктивные материалы | |
Сосна (поперек волокон) | 0,180 |
Газобетон D600 | 0,260 |
2. Как рассчитать нужную толщину теплоизоляции!
Зная «правильную лямбду» — λБ, вы сможете самостоятельно рассчитать нужную толщину теплоизоляции. Есть очень важная величина – «Сопротивление теплопередаче R» ограждающей конструкции (стены, перекрытий).
R=δ/ λБ, где δ– толщина материала, в метрах;
Зачем она нужна? Чтобы рассчитать нужную толщину утепления.
δ = R * λБ, где δ– толщина материала, в метрах;
Требуемое сопротивление теплопередаче определено для каждого региона. Для Салехарда они следующие:
Ограждающая конструкция | Требуемое сопротивление теплопередаче Rreq, м2°С/Вт |
Стены | 4,61 |
Покрытия и перекрытия над проездами | 6,03 |
Перекрытия чердачные, над неотапливаемыми подпольями и подвалами | 6,78 |
Упрощенный расчет не сложен:
Например, стены сложены из газобетона толщиной 30 см. Какая толщина теплоизоляции Роквул Венти Баттс Оптима нужна для утепления стены?
- Расчет сопротивления теплопередаче стены из газобетона:
Толщина 0,3м, коэффициент теплопроводности λБ 0,26
R (газобетон)=0,3 /0,26 = 1,154 м2°С/Вт
- Расчет толщины слоя теплоизоляции для достижения необходимого сопротивления теплопередаче
коэффициент теплопроводности минплиты Роквул Венти Баттс Оптима λБ =0,038 Вт/м*С°
Требумое сопротивление для стены = 4,61
Требуется добавить за счет теплоизоляции сопротивление (4,61-1,154)= 3,456
Толщина теплоизоляции δ = 3,456*0,038 = 0,13м = 130мм.
С учетом того, что теплоизоляцию толщиной 130 мм надо производить под заказ, и с учётом наших упрощений в расчете, примем нужную толщину 150мм.
В таком расчете есть несколько упрощений. Специалисты бы взяли коэффициент теплопроводности не конкретно газосиликатного блока, а кладки. Т.е. учли бы мостики холода из цементного раствора, которым скрепляются блоки. Для слоя теплоизоляции добавили бы теплопотери через дюбели для крепления минплиты и через металлические кронштейны для сайдинга. Но мы для сравнительных расчетов можем обойтись без этого. |
Т.е. стену из газобетона толщиной 30 см, нужно утеплить 150мм теплоизоляции типа Венти Баттс Оптима.
Мы подскажем вам способ сделать это дешевле. Надо на фасаде первый слой толщиной 100мм сделать из минплиты URSA П-30 (λБ =0,039), а второй слой — из минплиты толщиной 50мм Венти Баттс Оптима. Такой вариант будет на 35% дешевле. А тепло будет держать так же.
Что будет если утеплить минплитой толщиной 100мм? Тогда для достижения комфортной температуры вам нужно будет потратить больше энергии, реже сможете проветривать помещения.
Еще несколько расчетов:
Сопротивление теплопередаче деревянной стены толщиной 150мм (брус «капиталка»): R (брус «капиталка»)=0,15 /0,18 = 0,83 м2°С/Вт – всего 18% от требуемого сопротивления для стены 4.61. Сопротивление теплопередаче СИП-панели 200мм с пенопластом: R (СИП панель)=0,2 /0,047 = 4,255 м2°С/Вт – 92% от требуемого сопротивления. С учетом теплопотерь через массивный деревянный каркас, обязательно требуется дополнительное утепление. |
Расчет толщины теплоизоляции на цокольное или чердачное перекрытие (по деревянным лагам): Необходимое R = 6.78 м2°С/Вт маты УРСА GEO М-11: 6.78*0.046=0.312 м нужен слой толщиной минимум 350мм плиты УРСА Terra34: 6.78*0.040=0.271 м нужен слой толщиной минимум 300мм |
Подписывайтесь на нашу группу VK/stroymag89, чтобы не пропустить интересную информацию.
1 | Асбестовый матрац, заполненный совелитом | 0,087+0,00012* tт |
2 | Асбестовый матрац, заполненный стекловолокном | 0,058+0,00023* tт |
3 | Асботкань в несколько слоев | 0,13+0,00026* tт |
4 | Асбестовый шнур | 0,12+0,00031* tт |
5 | Асбестовый шнур (ШАОН) | 0,13+0,00026* tт |
6 | Асбопухшнур (ШАП) | 0,093+0,0002* tт |
7 | Асбовермикулитовые изделия марки 250 | 0,081+0,00023* tт |
8 | Асбовермикулитовые изделия марки 300 | 0,087+0,00023* tт |
9 | Битумоперлит | 0,12+0,00023* tт |
10 | Битумокерамзит | 0,13+0,00023* tт |
11 | Битумовермикулит | 0,13+0,00023* tт |
12 | Вулканитовые плиты марки 300 | 0,074+0,00015* tт |
13 | Диатомовые изделия марки 500 | 0,116+0,00023* tт |
14 | Диатомовые изделия марки 600 | 0,14+0,00023* tт |
15 | Известково-кремнеземистые изделия марки 200 | 0,069+0,00015* tт |
16 | Маты минераловатные прошивные марки 100 | 0,045+0,0002* tт |
17 | Маты минераловатные прошивные марки 125 | 0,049+0,0002* tт |
18 | Маты и плиты из минеральной ваты марки 75 | 0,043+0,00022* tт |
19 | Маты и полосы из непрерывного стекловолокна | 0,04+0,00026* tт |
20 | Маты и плиты стекловатные марки 50 | 0,042+0,00028* tт |
21 | Пенобетонные изделия | 0,11+0,0003* tт |
22 | Пенопласт ФРП-1 и резопен группы 100 | 0,043+0,00019* tт |
23 | Пенополимербетон | 0,07 |
24 | Пенополиуретан | 0,05 |
25 | Перлитоцементные изделия марки 300 | 0,076+0,000185* tт |
26 | Перлитоцементные изделия марки 350 | 0,081+0,000185* tт |
27 | Плиты минераловатные полужесткие марки 100 | 0,044+0,00021* tт |
28 | Плиты минераловатные полужесткие марки 125 | 0,047+0,000185* tт |
29 | Плиты и цилиндры минераловатные марки 250 | 0,056+0,000185* tт |
30 | Плиты стекловатные полужесткие марки 75 | 0,044+0,00023* tт |
31 | Полуцилиндры и цилиндры минераловатные марки 150 | 0,049+0,0002* tт |
32 | Полуцилиндры и цилиндры минераловатные марки 200 | 0,052+0,000185* tт |
33 | Совелитовые изделия марки 350 | 0,076+0,000185* tт |
34 | Совелитовые изделия марки 400 | 0,078+0,000185* tт |
35 | Скорлупы минераловатные оштукатуренные | 0,069+0,00019* tт |
36 | Фенольный поропласт ФЛ монолит | 0,05 |
37 | Шнур минераловатный марки 200 | 0,056+0,000185* tт |
38 | Шнур минераловатный марки 250 | 0,058+0,000185* tт |
39 | Шнур минераловатный марки 300 | 0,061+0,000185* tт |
Теплопроводность базальтовой ваты, коэффициент теплопроводности
Базальтовая вата имеет довольно разноплановые характеристики, среди которых следует выделить отличные противопожарные свойства, высокие тепло- и шумоизоляционные характеристики.
Содержание статьи о теплопроводности базальтовой ваты
Свойства базальтового утеплителя
1. Негорючесть.
Базальтовая вата подвергалась проверкам во многих странах по различным методикам, в результате чего ее признали абсолютно негорючей, что позволяет использовать ее для теплоизоляции дымоходов. Это очень важный параметр в строительстве. На сегодняшний день множество материалов характеризируются как негорючие, но на самом деле многие оказываются не такими. Естественно, чтобы базальтовая вата была противопожарной, нужно приобретать ее у проверенных производителей.
2. Высокие водоотталкивающие свойства.
Кроме этого следует отметить отличные гидрофобные свойства материала. Базальтовая вата имеет в своем составе волокна, которые уже сами по себе водоотталкивающие. Кроме этого хорошие производители при производстве применяют особые добавки, увеличивающие свойства отталкивать влагу. В сравнении с другими разновидностями утеплителей базальтовая вата хорошо пропускает пар, а главное, что при этом она остается сухой. Это свойство незаменимое в строительстве.
3. Высокая устойчивость к нагрузкам.
Что касается устойчивости к нагрузкам, базальтовая вата хорошо справляется со всеми нагрузками, которыми она подвергается. Ее устойчивость напрямую зависит от того, где именно она применяется. Вата выдерживает нагрузки на сжатие 5-80 кПа при 10% деформации. Это свойство является особо важным физико-механическим показателем строительных материалов, подвергаемым нагрузкам. Изделия из каменной ваты могут быть разными. В основном это зависит от положения волокон, плотности, размеров и количества связывающего вещества в определенном элементе.
4. Небольшая плотность.
Базальтовая вата – это материал, состоящий из очень тонких волокон (3-5 мкм), которые переплетены между собой в хаотическом порядке, образовывая ячейки. Именно ячейки обеспечивают отличительные теплоизоляционные свойства материала, так как в них содержится воздух. Утеплитель имеет небольшую плотность, особенно в сравнении с другими материалами, применяемыми в строительстве. Это значит, что в нем содержится много воздуха. Когда базальтовый утеплитель находится в сухом состоянии, его теплопроводность превышает теплопроводность воздуха, находящегося в неподвижном состоянии. Рассмотрим данную характеристику более подробно.
Коэффициент теплопроводности базальтовой ваты
Сегодня теплоизоляция базальтовой ватой широко распространена. И это не удивительно, ведь за невысокую цену вы покупаете негорючий материал с низкой теплопроводностью. В свое время минеральная вата появилась в качестве замены асбестового полотна, которое убрали из рынка из-за небезопасности для здоровья человека.
Одно из самых существенных преимуществ, которое отличает базальтовую вату от других материалов – это стоимость. Заменители на основе пенопласта, пенополистерола и полиуретана или стоят на порядок больше, или не обеспечивают такой же уровень безопасности, теплоизоляции и негорючести. Среди проверенных производителей базальтовой ваты, выпускающих качественные изделия, следует выделить такие компании, как Лайнрок, Роквул, Теплит и Технониколь.
Выбор продукции определенного производителя зависит от назначения или характеристик продукта. Свойства базальтового утеплителя зависят от того, для чего она предназначена. Например, для утепления кровли характеристики будут одними, а для стен – совершенно другими. Плиты производятся с разной плотностью и ориентировкой под разные нагрузки. Естественно, на строительном рынке вы можете найти более дешевую минеральную вату неизвестных производителей за низкую цену. Но здесь нужно быть предельно осторожным, так как непроверенные компании часто предоставляют некачественную продукцию с вредными добавками.
Что касается теплопроводности базальтовой ваты, то значение колеблется в пределах 0.032-0.048 Вт/мК. Такую же теплопроводность имеет пенопласт, пенополистерол, пробки и вспененный каучук. Минеральная вата обладает высокой паропроницаемостью. Это способствует хорошему влагообмену с окружающей средой, при этом вы навсегда избавитесь от проблемы возникновения конденсата, образования на стенах грибка и плесени.
Для обеспечения качественной пароизоляции можно использовать фольгированную вату. Часто это незаменимо для изоляции труб, трубопроводов, стен бань и саун. Фольга осуществляет высокую защиту от ветра, что очень важно для утепления мансард. В наше время базальтовая минеральная вата используется для строительства загородных домов, вентилируемых и «мокрых» фасадов, утепления для воздуховодов и оборудования. Сейчас практически не найти материала, способного составить конкуренцию вате, произведенной на основе минеральных горных пород. Это высококачественный материал, поэтому смело отдавайте предпочтение именно этому утеплителю.
Теплопроводность базальтовой ваты ведущих производителей
На рынке базальтовых утеплителей хорошо зарекомендовали себя такие производители, как Изовер, Роквул и Кнауф. Какие же характеристики имеют материалы этих производителей?
Теплопроводность базальтовой ваты ISOVER
Для теплоизоляции кровель используется базальтовая вата Изовер Руф, Руф Н и Руф Н Оптимал теплопроводностью 0.036- 0.042 Вт/(м*K). Теплопроводность 0.035-0.039 Вт/(м*K) имеют материалы ISOVER Стандарт и Венти соответственно для утепления скатных кровель, мансард, каркасных стен и изоляции вентилируемых фасадов.
Материал | Использование | Коэффициент теплопроводности, Вт/(м*K) ?10, ?А, ?Б |
---|---|---|
ISOVER Фасад | утепление штукатурных фасадов | 0.037, 0.041, 0.042 |
ISOVER Стандарт | утепление скатных кровель, мансард, каркасных стен | 0.035, 0.038, 0.039 |
ISOVER Лайт | теплоизоляция внешних каркасных стен | 0.036, 0.039, 0.040 |
ISOVER Венти | теплоизоляция вентилируемых фасадов | 0.035, 0.038, 0.039 |
ISOVER Акустик | тепло- и звукоизоляция стен | 0.035, 0.039, 0.041 |
ISOVER Флор | теплоизоляция пола, звукоизоляция от ударного шума | 0.04, – , – |
ISOVER Оптимал | изоляция всех видов поверхностей | 0.04, – , – |
ISOVER Руф | теплоизоляция кровель, однослойная изоляция | 0.037, 0.041, 0.042 |
ISOVER Руф Н Оптимал | теплоизоляция кровель | 0.036, 0.040, 0.041 |
ISOVER Руф Н | теплоизоляция кровель | 0.036, 0.040, 0.042 |
Теплопроводность базальтовой ваты ROCKWOOL
Самый низкий коэффициент теплопроводности (0.035 и 0.037 Вт/(м*K) для ?10°C, ?25°C имеют материалы КАВИТИ БАТТС, ВЕНТИ БАТТС, ВЕНТИ БАТТС Д для теплоизоляции внешних стен. Более высокий коэффициент имеют плиты РУФ БАТТС (0.040) для утепления кровли.
Материал | Использование | Коэффициент теплопроводности, Вт/(м*K) ?10°C, ?25°C |
---|---|---|
ЛАЙТ БАТТС | теплоизоляция легких покрытий, мансардных помещений, междуэтажных перекрытий, перегородок | 0.036, 0.038 |
КАВИТИ БАТТС | средний слоя в трехслойных наружных стенах | 0.035, 0.037 |
ВЕНТИ БАТТС, ВЕНТИ БАТТС Д | теплоизоляция фасадных систем с вентилируемым воздушным зазором | 0.035, 0.037 |
РУФ БАТТС | теплоизоляция кровель | 0.038, 0.040 |
ФАСАД БАТТС | теплоизоляция фасадов | 0.037, 0.039 |
ФАСАД БАТТС Д | теплоизоляция фасадов | 0.036, 0.038 |
ФЛОР БАТТС | тепловая изоляция полов по грунту, устройство акустических плавающих полов | 0.037, 0.038 |
Теплопроводность базальтовой ваты Knauf
Как известно, чем низшую теплопроводность имеет утеплитель, тем высший уровень теплоизоляции он обеспечивает. Самый низкий коэффициент теплопроводности (0.035 Вт/м*K) имеет материал Knauf Insulation WM 640 GG/WM 660 GG, предназначенный для теплоизоляции оборудования и трубопроводов.
Материал | Использование | Коэффициент теплопроводности, Вт/(м*K) ?10 |
---|---|---|
Knauf Insulation FKD-S | утепление стен снаружи | 0.036 |
Knauf Insulation FKD | утепление стен снаружи | 0.039 |
Knauf Insulation LMF AluR | теплоизоляция наружных поверхностей, трубопроводов, воздуховодов,оборудования | 0.04 |
Knauf Insulation WM 640 GG/WM 660 GG | теплоизоляция оборудования и трубопроводов | 0.035 |
Knauf Insulation HTB | теплоизоляция оборудования и трубопроводов | 0,035-0,039 |
Knauf Insulation DDP-K | теплоизоляция плоской кровли и перекрытий | 0.037 |
Видео: Минвата в плитах – базальтовая вата
Каталоги продукции и инструкции по монтажу ведущих производителей
Изовер
Каталог ISOVER ВентФасад
Каталог ISOVER Классик Плюс
Каталог ISOVER Классик
Каталог продукции ISOVER для Сауны
Каталог продукции ISOVER СкатнаяКровля
Каталог продукции ISOVER ШтукатурныйФасад
Инструкция по монтажу фасадной теплоизоляции
Каталог продукции ISOVER на основе каменного волокна
Каталог продукции ISOVER на основе стекловолокна
Утепление скатных кровель и мансард
Кнауф
Инструкция по монтажу теплоизоляции «Вентилируемый фасад»
Инструкция по монтажу системы теплоизоляции «Скатная кровля»
Каталог профессиональных решений по тепловой, пожарной и звуковой защите зданий
Натуральный утеплитель для частного домостроения, каталог продукции
Новое поколение натуральных безопасных утеплителей от Кнауф
Ursa
URSA теплоизоляция из минерального волокна
Каталог утеплителей Урса – Скатные крыши
Каталог утеплителей Урса – Плоские крыши
Каталог утеплителей Урса – Навесные вентилируемые фасады
Каталог утеплителей Урса – Полы и перекрытия
Каталог утеплителей Урса – Перегородки
Каталог утеплителей Урса – Штукатурные фасады
Каталог утеплителей Урса – Трехслойные наружные стены из камней, блоков и жел
Каталог утеплителей Урса – Каркасные стены и стены из сэндвич-панелей
Каталог утеплителей Урса – Стены подвалов и фундаменты
Теплопроводность минеральной ваты, особенности и преимущества
Строительная отрасль развивается стремительно, появляется все больше новых технологий. Поэтому многие люди сейчас отдают предпочтение строительству загородных домов. Чтобы обеспечить комфортное проживание в доме, необходимо позаботиться о его утеплении минватой. Для этого важно знать коэффициент теплопроводности минеральной ваты.Структурность материала
Таблица характеристик популярных материалов
Строительный рынок предлагает огромнейшее разнообразие теплоизоляционных материалов, которые отличаются не только своими эксплуатационными характеристиками, но и стоимостью. Если вы решили осуществить утепление коттеджа, а у вас нет базовых знаний и навыков в этом деле, то, чтобы не ошибиться в выборе, лучше всего воспользоваться советами и рекомендациями специалистов. В статье мы подробно рассмотрим специфику проведения работ с использованием минваты, потому что теплопроводность сэндвич-панелей как основного материала чрезвычайно важна для утепления.
Характерные особенности утеплителя
Минеральная вата наделена множеством свойств, самым главным из которых является отличная устойчивость к деформациям любого характера. Кроме того, панели из нее имеют высокую прочность, отличаются надежностью и долговечностью. Как уже было сказано, сейчас на рынке существует достаточно обширный перечень материалов, которые могут пригодиться для утеплительных работ. К самым популярным среди них можно отнести утепление:
- плитами пенопласта;
- асбестом;
- минватой;
- каменной ватой и т.д.
Необходимо отметить, что минеральная вата считается одним из наиболее доступных вариантов. Ее активно используют уже больше двух десятков лет. Даже учитывая факт появления новых технологий и строительных продуктов, ничто так и не смогло вытеснить данный материал с полок магазинов. Но не стоит забывать о том, что она не только доступна и долговечна, но и имеет некоторые особенности применения. В состав ваты входит множество компонентов, соответственно, существует немало ее разновидностей.Зависимость структуры и теплопроводности
Минвата в разрезе
Каждая из вариаций наделена своими качественными свойствами, а также волокнистостью. Если говорить о последнем критерии, то специалисты в строительной отрасли разделяют вату с вертикальной, гофрированной, а также горизонтальной волокнистостью. Чтобы выбрать наиболее подходящий вариант, в каждом из случаев необходимо брать в расчет специфику сфер применения.
Основные преимущества
• Отличная устойчивость к высоким и низким температурным показателям.
• Устойчивость к влиянию климатических, химических и механических факторов.
• Обеспечение хорошей теплоизоляции.
• Звукоизоляционные свойства.
Процесс утепления
Это далеко не полный перечень достоинств, которые делают данный материал востребованным на строительном рынке. Так как в его составе преимущественно натуральные компоненты, его можно по праву назвать безопасным для человеческого здоровья. Даже во время длительной эксплуатации вы можете быть уверенными в том, что в воздух не будут попадать никакие токсические отходы (в том числе при условии высоких температур). Не забывайте и о том, что, применяя утеплительный материал для внутренней отделки, важно обращать внимание на его способность пропускать пары, а также коэффициент теплопроводности ваты. Она наделена всеми характеристиками для обеспечения проводимости паров на должном уровне. Единственное, о чем важно помнить, так это об особой осторожности при работе с материалом из-за его хрупкости.Сопротивление строительных материалов
Область применения минеральной ваты
Вата для утепления обладает незначительным коэффициентом проводимости тепла, поэтому она используется в разных строительных и промышленных областях. Важно подчеркнуть, что именно она является практически незаменимым теплоизолятором, если речь идет о работе с горячими ограждающими элементами, потому что имеет низкий уровень возгораемости.
Кроме того, сейчас она активно используется в утеплении фасадов зданий, а также для создания внутренней изоляции в бетонных и железобетонных постройках. Минеральная вата применяется для обустройства систем водоотвода и отопления. В последние несколько лет из-за своей доступности для возведения небольших бань также начал использоваться данный материал.Сравнительная характеристика утеплителей
Теплопроводность минваты: важные критерии
Теплопроводность – это способность какого-то объекта или предмета пропускать тепловую энергию. Абсолютно все материалы, применяемые сегодня в строительстве (и минераловатный утеплитель не исключение), обладают определенной теплопроводностью, которую можно количественно оценить в виде коэффициента теплопроводности.
Научно доказано, что твердые материалы не способны удерживать тепло на протяжении долгого времени, именно поэтому возникает необходимость в обеспечении дополнительного утепления жилых и промышленных конструкций.
Специалисты в строительной отрасли оперируют термином «теплоизоляционный материал». Такое понятие характеризует изолятор, который наделен низкой теплоотдачей. Сюда можно отнести облицовочную плитку, стекловату, кирпич и тому подобные. Причем на уровень теплопроводности во многом оказывает влияние структурность материалов, а также их плотность и прочие характеристики.
Теплопроводность ваты может варьироваться в пределах 0,038-0,055 Вт/м*К.
Если проводить сравнение с аналогами, данный материал считается наиболее оптимальным для строительных работ. Сегодня производство сэндвич-панелей происходит по определенной схеме:
Схема производства
Легко понять, что теплопроводность достаточно просто рассчитать по объему и толщине материала. К примеру, стекловата имеет коэффициент теплоотдачи 0,044 Вт/м*К, поэтому толщина ее слоя должна быть не меньше 189 мм.
Характеристики теплоизоляционных плит Изорок — теплопроводность, плотность (таблицы)
Чтобы сэкономить энергоресурсы на обогрев помещения, а следовательно, и денежные средства, необходимо утеплить здание добротной теплоизоляцией. Какие материалы для этого лучше всего подходят? В этой статье рассмотрены технические характеристики, особенности и достоинства теплоизоляционных плит Изорок.
Производство теплоизоляции
Сырьем для изготовления теплоизоляционных плит служат базальтовые горные породы. Под воздействием температуры в 1500 градусов материал плавится, после чего вытягивается при помощи центрифуги в тонкие волокна. В процессе изготовления в сырье добавляются примеси, в том числе водоотталкивающие компоненты. Автоматизированный укладчик переплетает волокна в полотно различной толщины, которое затем прессуется и режется на плиты заданных размеров.
Технология производства построена таким образом, что получаемая теплоизоляция полностью соответствует нормам ТУ предприятия-изготовителя и является экологически чистой и безопасной для здоровья человека.
Габариты теплоизоляционного материала различаются в зависимости от типа и назначения изделия. Так, толщина плит варьируется от 20 до 200 мм, длина – 500 или 600 мм, ширина – 1000 или 1200 мм.
Отличия модификаций
Теплоизоляция Изорок имеет различные модификации: Изовент, Изофас, Изолайт, Изоруф, Изофлор, Изокор и другие. Каждый тип теплоизоляционного материала предназначен и рекомендуется использовать для утепления определенного элемента конструкции. Так, для межэтажных перекрытий и утепления полов используются плиты Изофлор, поскольку они имеют высокую плотность и хорошие прочностные показатели.
А для утепления наружных стен рекомендуется применять теплоизоляционное покрытие Изофас; для теплоизоляции крыши дома или другого строения производитель рекомендует использовать плиты Изоруф.
Таким образом, ознакомившись с различными модификациями изоляционных плит Изорок, потребитель сможет подобрать необходимый тип теплоизоляции.
Технические характеристики плит
Технология производства и используемые для изготовления изделия материалы обеспечили высокие показатели теплоизоляции Изорок:
- Теплопроводность. Наличие воздушных пор в плитах позволяет удерживать тепло в стенах здания. Коэффициент теплопроводности теплоизоляции Изорок при комнатной температуре не превышает 0,042 Вт/(м·К).
- Устойчивость к механическому воздействию. Теплоизоляционная плита достаточно прочна на разрыв: изделие выдерживает необходимые механические напряжения — прочность на отрыв слоев составляет от 5 до 15 кПа. При этом сжимаемость материала варьируется от 5 до 25%.
- Звукоизоляция. В зависимости от типа теплоизоляции плотность плиты составляет 30…170 кг/м3, благодаря чему звуковые волны хорошо поглощаются этим изоляционным материалом.
- Водопоглощение. Гидрофобные добавки препятствуют попаданию влаги в теплоизоляционное полотно (водопоглощение материала составляет менее 1%). Водоустойчивость плит позволяет устанавливать их с применением растворов на водной основе.
- Огнеупорность. Негорючие компоненты, из которых выполнена теплоизоляция, выдерживают температуру свыше 800 градусов Цельсия без воспламенения.
Основные технические характеристики модификаций теплоизоляционных плит Isoroc приведены в таблицах ниже. В первой таблице даны свойства теплоизоляции с плотностью от 33 до 90 кг/м3.
Характеристика | Ультралайт | Изолайт-Л | Изолайт | Изолайт-Люкс | Изовент-СЛ | Изовент-Л | Изовент |
---|---|---|---|---|---|---|---|
Плотность, кг/м3 | 33 | 40 | 50 | 60 | 75 | 80 | 90 |
Коэффициент теплопроводности при 10°С, Вт/(м·К) | 0,033 | 0,036 | 0,034 | 0,033 | 0,033 | 0,034 | 0,034 |
Коэффициент теплопроводности при 20°С, Вт/(м·К) | 0,036 | 0,038 | 0,036 | 0,035 | 0,036 | 0,036 | 0,036 |
Коэффициент теплопроводности при условиях эксплуатации А, Вт/(м·К) | — | 0,04 | 0,038 | 0,038 | 0,038 | 0,038 | 0,039 |
Коэффициент теплопроводности при условиях эксплуатации Б, Вт/(м·К) | — | 0,042 | 0,04 | 0,04 | 0,039 | 0,04 | 0,041 |
Водопоглощение при кратковременном и частичном погружении, кг/м2 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 |
Содержание органических веществ, по массе, % | < 3,5 | < 2,5 | < 2,5 | < 3,5 | < 4 | < 3,5 | < 4 |
Сжимаемость, % | < 25 | < 15 | < 10 | < 7 | — | — | — |
Влажность по массе, % | — | — | — | — | < 0,5 | < 0,5 | < 0,5 |
Во второй таблице указаны характеристики более тяжелых плит — с плотностью от 105 до 175 кг/м3.
Характеристика | Изокор | Изофлор | Изоруф-НЛ | Изоруф-Н | Изокор-К | Изоруф | Изоруф-В |
---|---|---|---|---|---|---|---|
Плотность, кг/м3 | 105 | 110 | 115 | 130 | 140 | 150 | 175 |
Коэффициент теплопроводности при 10°С, Вт/(м·К) | 0,04 | 0,034 | 0,034 | 0,035 | 0,04 | 0,036 | 0,037 |
Коэффициент теплопроводности при 20°С, Вт/(м·К) | 0,042 | 0,038 | 0,038 | 0,039 | 0,042 | 0,039 | 0,041 |
Коэффициент теплопроводности при условиях эксплуатации А, Вт/(м·К) | — | 0,04 | 0,04 | 0,041 | — | 0,042 | 0,043 |
Коэффициент теплопроводности при условиях эксплуатации Б, Вт/(м·К) | — | 0,042 | 0,042 | 0,043 | — | 0,044 | 0,046 |
Водопоглощение при кратковременном и частичном погружении, кг/м2 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 | < 1 |
Содержание органических веществ, по массе, % | < 4 | < 4 | < 4 | < 4 | < 4 | < 4 | < 4 |
Сжимаемость, % | — | — | — | — | — | — | — |
Влажность по массе, % | — | < 0,5 | < 0,5 | < 0,5 | — | < 0,5 | < 0,5 |
Высокие технические характеристики теплоизоляционных плит Изорок позволяют использовать этот материал, как для утепления жилых домов, так и для обустройства промышленных и коммунальных объектов.
Источники:
- Сайт https://stroiteltd.ru.
- Технические условия ТУ 5762-005-53792401-2010.
- Технические условия ТУ 5762-006-53792403-2016.