Солнечная батарея своими руками — принцип и порядок сборки в домашних условиях
В получении электроэнергии альтернативными методами в последнее время прослеживается тенденция к активному развитию. И это несмотря на то что подобный подход пока еще остается весьма затратным, если планируется приобрести готовое оборудование. Ждать быстрой окупаемости сделанных вложений не приходится.
Солнечная батарея своими рукамиТем не менее, многие рачительные хозяева домов и даже квартир все пристальнее рассматривают такие возможности. А некоторые из них идут по пути самостоятельного создания необходимого оборудования, хотя бы в качестве стартового эксперимента. Так, например, солнечная батарея своими руками вполне может быть создана в домашних условиях, так как сегодня для ее сборки можно приобрести все необходимое. Тем более что существует несколько способов сборки солнечных панелей из разных комплектующих.
Тем, кто хочет попробовать самостоятельно собрать такой источник электроэнергии, и переназначена настоящая публикация.
Что такое солнечная батарея, и как она работает?
Общие понятия о принципе получения электричества от солнечной энергии
У людей, решивших собрать солнечную батарею, возникает немало вопросов, а для многих эта задача видится и вовсе не выполнимой из-за кажущейся сложности ее конструкции. Однако, на самом деле особых трудностей в ее сборке нет. И в этом можно убедиться, изучив схему и рассмотрев, как выполняет работу мастер, изготовивший не один подобный прибор.
Солнечная батарея представляет собой совокупность фотоэлектрических преобразователей солнечной энергии в электрическую.
Отдельные фотоэлементы соединены в единую панель и защищены с двух сторон материалами, стойкими к ультрафиолету, влаге и другим атмосферным явлениям. Это важно, так как батареи чаще всего эксплуатируются на открытом незащищенном пространстве — это может быть крыша здания, балконное ограждение или же поляна около дома.
- Пластины-преобразователи — это полупроводниковые фотоэлементы, обладающие способностью генерировать постоянный ток под воздействием света. Пластины соединяются между собой по определенной схеме специальными шинами (плоскими проводниками), и собираются в батарею в общем корпусе.
- Панели-батареи, собранные из фотоэлементов, подключаются к прибору-контролеру с подобранными параметрами тока и напряжения, необходимыми для зарядки аккумулятора.
- Аккумулятор или целая батарея таких аккумуляторов накапливает заряд.
- Специальный инвертор преобразует постоянный ток в переменный с напряжением в 220 В (если этот необходимо).
Такая череда приборов используются в схеме в том случае, когда планируется отдельные постоянные точки потребления или даже полностью весь дом запитать от солнечной энергии. Накопленная в аккумуляторе за день энергия может быть использована в пасмурные дни или в темное время суток. Применяются и более простые схемы, когда солнечные батареи выступают лишь вспомогательным источником питания, и накопление энергии не требуется. Панель в таком случае может быть непосредственно подключена к прибору-потребителю. Однако, этот вариант менее надежен, так как стабильность питания будет полностью зависеть от наличия солнца в данный момент.
Использование солнечных батарей для полного снабжения дома энергией актуально в регионах, где количество солнечных дней в течение года преобладает. Этим обычно «славятся» южные регионы страны. В других условиях они чаще всего применяются в качестве дополнительных источников электроснабжения.
Модули солнечных батарей, из которых собирается панель, подразделяются на три типа:
— монокристаллический;
— поликристаллический;
— аморфный (тонкопленочный).
От особенностей структурного строения пластин напрямую зависит эффективность конструкции, а также ее общая стоимость.
Монокристаллический и поликристаллический вариант солнечной батареи
Монокристаллические пластины изготавливаются из монокристаллов кремния, выращенных по методу Чохральского. Они отличаются высоким качеством и обладают неплохим (по меркам фотоэлементов) КПД, равным примерно 20÷22%. Из-за этого и стоимость их достаточно высока.
Солнечные лучи, попадая на монокристаллическую поверхность, способствуют возникновению направленного движения свободных электронов. Пластины с двух сторон подсоединены к шинам, которые затем подключаются к общей электрической цепи системы.
Высокий КПД этого типа пластин объясняется тем, что солнечные лучи равномерно рассеиваются по поверхности кристалла.
Поликристаллические фотоэлементы изготавливаются из полупроводника, имеющего поликристаллическую структуру. Именно этот тип батареи считается оптимальным для создания системы преобразования солнечной энергии. Стоимость элементов, а как следствие — и целых батарей получается ниже по сравнению с монокристаллическими приборами. Это обуславливается особенностями производства фотоэлементов, так как при их изготовлении применяются фрагменты, оставшиеся от монокристаллов.
Если сравнивать два этих типа изделий, то можно выделить следующие различия, выявленные тестированием независимых компаний:
- Поликристаллические пластины отличаются по внешнему виду от монокристаллов, так как имеют неоднородный по цвету окрас поверхностей, с перемежением темных и светлых участков.
- В процессе эксплуатации у всех фотоэлементов происходит постепенное снижение мощности. Так, после года работы у монокристаллов она снижается на 3%, а у поликристаллических элементов — на 2%.
- Суммарное количество электроэнергии, выработанное монокристаллическим модулем, примерно на 30% выше, чем у поликристаллических элементов, при их одинаковой площади.
- Стоимость поликристаллов на 10÷15 % ниже монокристаллических батарей.
Аморфные солнечные модули
Этот тип элементов представляет собой плотную гибкую пленку, значительно упрощающую процесс монтажа батарей.
На современном рынке представлены три поколения подобных фотоэлементов:
- Элементы первого поколения являются однопереходными. Они имеют низкий КПД — всего 5% и относительно небольшой срок эксплуатации — не более 10 лет.
- Пленка второго поколения тоже однопереходного типа, но уровень КПД у нее повышен до 8%, увеличен и срок эксплуатации.
- Тонкопленочные батареи третьего поколения обладают КПД до 12%, и обладают длительным сроком службы, составляя конкуренцию кристаллическим вариантам.
Несмотря на не выдающиеся характеристики, самыми популярными остаются однопереходные тонкопленочные модули второго поколения. Они доступны по цене и обладают приличной мощностью, которая вполне может конкурировать с кристаллическими вариантами батарей.
Сравнение солнечных фотоэлементов
Если сравнивать кристаллические и пленочные батареи, то у последних существует ряд существенных преимуществ, благодаря которым часто предпочтение отдается именно им:
- Аморфные пленочные элементы лучше реагируют на изменение температуры, в частности, на ее повышение. В солнечные месяцы года этот тип батарей способен произвести большее количество энергии по сравнению с кристаллическими аналогами — те при нагреве способны потерять до 20% мощности.
- Пленочные батареи продолжают выработку энергии даже при рассеянном солнечном свете, в отличие от кристаллов, которые не генерируют энергию в пасмурную погоду. При слабом или рассеянном свете аморфная пленка способна вырабатывать до 20% энергии от своих номинальных показатели. Не слишком много, но лучше, чем ничего.
- Стоимость кристаллических панелей гораздо выше, чем пленочных. Причем цена на последние продолжает снижаться из-за активного наращивания объемов их производства.
- Пленочные солнечные батареи имеют меньшее количество дефектов и уязвимых мест. Дело в том, что жёсткие пластины при формировании панели спаиваются между собой, а пленка устанавливается в корпус конструкции в целом виде.
Если подвести итоги и вывести их в таблицу, то сравнительные характеристики пленочных аморфных и жестких кристаллических солнечных фотоэлементов будут выглядеть следующим образом:
Параметры | Кристаллические панели | Аморфные тонкопленочные батареи |
---|---|---|
КПД изделий | 9÷20% | 6÷12% |
Выходное напряжение одного фотоэлемента | Около 0,5 В | Около 1,7 В |
Световой спектр максимальной чувствительности | Ближе к красному цвету, то есть для эффективной работы необходимо яркое солнце. | Ближе к ультрафиолету, то есть восприимчивы и к рассеянному освещению. |
Гибкость | Хрупкие и ломкие, требуют обязательной жесткой основы и надежной защиты от механического воздействия. | Гибкие, легко гнутся, не заламываются. |
Надежность при эксплуатации в экстремальных условиях | Требуют жесткой основы и надежной защиты от механического воздействия. | Более устойчивы к механическим воздействиям, хотя тоже требуют защиты. |
Долговечность | При должной защите, эксплуатируются длительное время, но с годами постепенно снижается эффективность работы изделий. | Качественные изделия, выполненные с соблюдением технологии, выгорают на солнце на 4% за первые 4÷5 лет эксплуатации. Дешевые китайские аналоги могут подвести через 2÷3 года. |
Вес | Тяжелые. | Легкие. |
Необходимо уточнить, что производятся и комбинированные варианты солнечных батарей, то есть состоящие из кристаллических и аморфных элементов. То есть используются по максимуму все преимущества обоих типов. Однако, стоимость подобных изделий весьма высока, поэтому они не настолько популярны, как упомянутые выше батареи.
Что влияет на эффективность солнечных батарей?
Чтобы не удивляться тому, что солнечные батареи работают с разной эффективностью в различные периоды, необходимо выделить факторы, которые влияют на КПД системы. Причем названные ниже моменты действуют на солнечные батареи всех типов, но с различной интенсивностью.
- При повышении температуры производительность любых фотоэлементов панелей снижается.
- При частичном затемнении, например, если солнце попадает только на часть панели, а какое-то количество элементов остается неосвещенным, выходное напряжение падает за счет потерь неосвещенных пластин.
- Панели, оснащенные линзами для концентрирования излучения, становятся совершенно неэффективными в облачную погоду, так как пропадает эффект фокусирования потока света.
- Для достижения высокой эффективности работы солнечной батареи необходим правильный подбор сопротивления нагрузки. Поэтому панели подключаются не напрямую к приборам или аккумулятору, а через управляющий системой контролер, который обеспечит оптимальный режим функционирования батареи.
Недостатки солнечных батарей
У солнечных батарей существует ряд недостатков, узнав о которых многие хозяева жилья сразу отказываются от затеи их приобретения и установки.
Действительно мощная, эффективная солнечная батарея потребует немалой полностью открытой для солнечных лучей площади.- Для получения достаточного количества энергии необходимо установить весьма большое количество батарей довольно больших размеров. Понятно, что для их размещения потребуются большие площади. Многие собственники частных домов используют для их монтажа солнечную сторону крыши.
- Нельзя забывать, что батарея будет работать эффективно, только если ее лицевая сторона будет подвергаться периодической очистке от насевшей пыли, грязи, разводов высохшей дождевой воды. А это значит, что к поверхности необходимо обеспечить удобный и легкий доступ.
- Солнечные батареи недостаточно эффективно функционируют в сумерках и совершенно не работают в ночные часы. Чтобы использовать энергию от них в любое время суток необходимо подключение к нескольким аккумуляторам, которые за солнечный период накапливают энергию.
- Для большого количества аккумуляторов, если система планируется в качестве основного источника энергии, может потребоваться отдельное помещение.
- Солнечная энергия считается экологически чистой, однако сами пластины фотоэлементов содержат в себе такие токсичные вещества, как кадмий, свинец, мышьяк, галлий и т.п. При нагревании конструкции данные вещества могут выделяться не только в окружающую среду, но и проникать в помещения дома, если батареи установлены на крыше или балконе дома. Оптимальным вариантом будет установить систему в отдалении от жилых строений.
- При установке батарей на открытой площадке, для более высокой эффективности их работы, систему часто снабжают специальным фотоэлементом, реагирующим на положение Солнца, и поворотным механизмом, который будет поворачивать их вслед за движением светила. Эффективность повышается, но зато возрастает сложность системы и стоимость реализации проекта.
- Пока что не приходится говорить о высокой эффективности работы подобных систем. Их КПД составляет в самом лучшем случае 20%, остальные 80% воспринятой поверхностью солнечной энергии уходят на нагрев самой батареи, средняя температура которой может достигать 55÷60 градусов. Как уже говорилось выше, при нагреве фотоэлементов, эффективность их работы падает.
- Чтобы предотвратить перегревание батарей, применяют те или иные системы принудительного охлаждения. Например, устанавливаются вентиляторы или насосы, перекачивающие хладагент. Понятно, что такие приборы также требуют электроэнергии, а также периодического обслуживания. Кроме того, они могут значительно снизить надежность работы всей конструкции. Ну а проблема эффективного пассивного охлаждения батарей пока не решается.
Как собрать солнечную батарею в домашних условиях?
Если после изучения представленной выше информации желание заняться изготовлением солнечной батареи не пропало, можно поэкспериментировать, создав и проверив собственное творение. Далее будет подробно рассмотрена сборка панели из монокристаллических пластин.
Монокристаллическая пластина 78×156 мм с двумя токосъемными дорожками на лицевой стороне. Симметрично им, на тыльной стороне пластины линии припаивания шин обозначены фигурными контактными окошками.В показанном примере домашний мастер собирает панель габаритами 750×960 мм, состоящую из 36 жёстких монокристаллических пластин размером мм. Пластины устанавливаются в четыре ряда, по 9 фотоэлементов в каждом. Между фотоэлементами выдерживается зазор порядка 10÷12 миллиметров.
Солнечные батареи, установлены на балконном ограждении, а также закреплены к его остеклению. Такой монтаж будет актуален, если балкон находится на солнечной стороне дома. Красной рамкой выделена панель, монтаж которой будет показан.Иллюстрация | Краткое описание выполняемых операций |
---|---|
Для работы потребуются, прежде всего, сами пластины. Мастер рекомендует приобретать их с запасом, так как они могут иметь разные параметры выходного напряжения, а из них необходимо будет выбрать 36 штук, имеющих наиболее близкие друг к другу показатели. Шина — это медная луженая лента, то есть уже покрытая оловом, что упрощает ее пайку. Потребуется порядка 10 метров узкой шины шириной в 1,6 мм и 2 метра широкой, шириной в 5 мм. Для электромонтажных работ необходимо подготовить обычный паяльник на 40 Вт. флюс для пайки — это канифоль, растворенная в спирте, спирт для обезжиривания поверхностей под пайку и их последующей очистки от остатков флюса, ватные диски и палочки. В качестве основы для монтажа всего модуля в данном случае используется акриловое стекло толщиной 5 мм. Для последующей герметизации фотоэлементов мастер решил использовать прочную бесцветная прозрачная поливинилхлоридную пленку ORACAL®751, которая часто применяется для закрепления рекламы на транспортных средствах. | |
Несколько слов о том, почему выбрана ширина шины именно 1,6 мм. Металл имеет свойство при нагревании расширяться, а при остывании, соответственно, сжиматься. На солнечной батарее этот процесс будет происходить постоянно, то есть днем припаянные шины будут увеличиваться в размерах, а ночью — наоборот, что не особо полезно для конструкции. На опыте мастер испытал ленту шириной в 2 мм, и все-таки остановил свой выбор именно на ширине 1,6 мм. По токопроводящим качествам эти шины не особо отличаются между собой, а более узкая все же меньше повержена линейной деформации. | |
Подготовив все необходимое, имеет смысл в первую очередь произвести сортировку пластин. Как говорилось выше, несмотря на то, что это одна модель, они зачастую могут иметь разные показатели в практической работе. А для гармоничной работы батареи значения вырабатываемого напряжения должны быть максимально близкими друг к другу. Например, в данном случае при проведении проверки обнаружилось, что фотоэлементы в равных условиях (при искусственном освещении) могут вырабатывать от 0,19 до 0,35 вольт. Лучше, если в одной панели будут собраны элементы, имеющие максимально близкие значения, скажем, от 0,30 до 0,33 вольт. Если в комплексе будет установлен один или два элемента, значительно отличающиеся по выходному напряжению, то они будут создавать никому не нужное сопротивление, и станут перегреваться. Таким образом, отбраковываются пластины, явно выпадающие из общей массы. | |
При монтаже пластин между ними будет оставляться зазор в 10÷12 мм. Он нужен для того, чтобы пленка, фиксирующая элементы на акриловом стекле, удерживала их со всех сторон. | |
Далее, необходимо уложить на столе две пластины на расстоянии в 10 мм, и по ним замерить, какой длины необходимо нарезать узкие шины. Как можно видеть на внешней стороне пластин для скрепления предусмотрены две металлические токосъемные полосы, а на обратной ее стороне места фиксации указаны точечно, окошками. | |
На лицевой стороне пластины от ее верхнего края необходимо отступить примерно 3 мм. | |
На обратной стороне второй панели шина также должна не доходить до нижнего края на эти же 2÷3 мм. | |
После определения длины одной соединительной шины, остальные соединительные элементы отмеряются по ней. Для каждых двух пластин потребуется по два отрезка шины, то есть всего нужно 72 штуки. В нарезанном виде шины выглядят, как показано на фото. Вовсе не обязательно заготавливать сразу все отрезки — их можно нарезать по ходу работы. Однако если они все-таки будут заготовлены все сразу, то рекомендовано их собрать и сцепить резинкой. Так они не потеряются, и не будут мешаться на столе. | |
Сначала шины припаиваются к лицевой стороне всех пластин. Но перед началом пайки металлические токосъемные полосы на пластинах необходимо подготовить, обезжирив спиртом. Для этой работы удобно использовать ватные палочки — их обмакивают в спирт и проходятся по полоске. Этот процесс необходим для повышения качества пайки. | |
Следующим подготовительным этапом идет нанесение на очищенные спиртом полоски канифольного флюса. Лучше, если он будет налит в эластичную емкость в виде маркера (клеевого карандаша) с мягким наконечником. Так будет легче работать, при необходимости выдавливая и распределяя необходимое количество состава. | |
Следующим шагом идет припаивание шин к внешней стороне пластин. Шина укладывается на металлическую контактную полоску и выравнивается. Далее, придерживая бо́льшую часть шины, аккуратно прижав ее к полосе, ее верхнюю сторону фиксируют паяльником на 20÷30 мм по длине. Дополнительный припой при этом не используется – вполне достаточно слоя лужения на самой шине. Теперь она закреплена и не сможет сдвинуться, поэтому ее оставшуюся длинную сторону закрепить на поверхности будет совсем просто. | |
Для этого пластину необходимо повернуть к себе противоположной стороной, так чтобы длинная часть шины оказалась под рукой. Придерживая шину и слегка ее натягивая, по ней аккуратно проводят паяльником, следя за тем, чтобы он не соскользнул в сторону. Луженая лента хорошо припаивается к правильно подготовленной поверхности — достаточно один раз без спешки провести по ней хорошо разогретым паяльником. Если на ленте останутся заусеницы, то их сразу же необходимо загладить, так как эта сторона пластин должна быть прижата к акриловому стеклу. | |
Припаяв обе ленты к пластине, их необходимо протереть спиртом с помощью ватной палочки или диска. Необходимо удалить с поверхности весь оставшийся флюс. | |
Таким же образом последовательно подготавливаются все 36 пластин, или же только 9 фотоэлементов, чтобы собрать одну из четырех полос солнечной панели. Здесь каждый мастер поступает так, как ему будет удобнее. | |
Далее будет рассмотрена сборка подготовленных фотоэлементов в одну полосу. Таким же способом производится и соединение остальных трех полос солнечной панели. | |
Вначале берется пластина, которая будет первой в полосе. Она укладывается на стол лицевой стороной вниз, вместе с припаянными к ней шинами. Затем полосы под пайку, выделенные на обратной стороне пластины контактными окошками, обрабатывается спиртом, а потом флюсом. Далее, отступив от края примерно 3 мм по линии, проходящей через окошки, укладывается отрезок шины, и по тому же способу, что и с внешней стороны, припаивается к поверхности. Свободные концы шин должны расположиться в противоположном направлении относительно припаянных к лицевой поверхности – они будут нужны при коммутации всего ряда элементов в общую батарею широкими шинами. | |
Теперь необходимо соединить между собой первую и вторую пластины ряда. Для этого концы шин, припаянных к лицевой стороне первой пластины, необходимо вывести на тыльную сторону второй пластины. Пластины при этом размещаются параллельно друг другу на установленном расстоянии (10 мм). Для удобства можно на рабочем столе заранее выполнить разметку, то есть сделать своеобразный шаблон взаимного расположения пластин. | |
Точки припаивания контактов обрабатываются спиртом, и затем на них наносится флюс. | |
Теперь можно осуществить припаивание шин. Для этого по ним также аккуратно, не торопясь, проводят разогретым паяльником. После окончания пайки обеих шин, их также необходимо протереть спиртом для удаления оставшегося флюса. | |
Далее, таким же образом коммутируется третья и все последующие пластины ряда. В результате должно получиться четыре полосы по 9 фотоэлементов, соединенных так, как было показано на иллюстрациях. | |
Готовые, спаянные ряды фотоэлементов поочередно укладываются на заранее подготовленное акриловое стекло необходимого размера. От краев элементов до края стекла должно быть выдержано расстояние в 50÷60 мм. На стекле ряды временно фиксируются короткими полосками прозрачного скотча. | |
«Золотое правило» последовательной коммутации источников питания постоянного тока: плюс предыдущего элемента соединен с минусом последующего – и так далее. В рядах это правило соблюдено. Теперь очень важно его не нарушить и при укладке рядов в батарею. Так, выступающие слева отрезки шин первого и третьего ряда должны быть припаяны на внешней стороне панели, которая в данном случае повернута к акриловой поверхности. Во втором и четвертом ряду должны выступать концы шин, зафиксированные на тыльной светлой стороне пластин. Если допустить ошибку, то последовательное соединение нарушится, и батарея работать не будет. | |
В результате конструкция уложенной панели должна будет выглядеть следующим образом. Когда все ряды будут закреплены на стекле скотчем, их необходимо объединить в одну систему. | |
Электрическое соединение осуществляется по представленной схеме. В результате сверху окажется «плюс», снизу «минус». | |
В качестве соединительных элементов используется широкие шины – это хорошо показано на схеме выше. К ним припаиваются выступающие концы тонких шин. Излишки после припаивания следует откусить кусачками. | |
На этой фото хорошо показана крайняя точка коммутации шин. Закончив работу, панель необходимо проверить на работоспособность с помощью тестера, переключив его на вольтметр и установив щупы на плюс и минус. | |
Проверку панели можно сначала произвести на рабочем столе – больших показателей не будет, но собранная панель продемонстрирует, что она «живая». А затем можно провести проверку, вынеся батарею на солнце. | |
К крайним плюсовой и минусовой шинам закреплены щупы мультитестера. | |
Даже при облачной погоде на холостом ходу батарея выдает 19,4 вольт — это говорит о правильности соединения панелей. | |
Солнца на момент проверки не было, и ток невелик, всего около 0,5 ампера. Но даже в пасмурную погоду батарея вырабатывает около 10 ватт энергии. | |
Параллельно рекомендуется проверить пластины на перегрев — это несложно прочувствовать тыльной стороной ладони. Если отдельные пластины на общем фоне явно перегреваются, то их желательно сразу же заменить – это пока сделать несложно. | |
Если батарея работает нормально, то можно ее окончательно герметизировать — закатывать в пленку. Эксплуатационный срок этой пленки семь лет, но как показывает практика, она отлично функционирует и дольше. Пленка имеет клеевой слой, закрытый защитной подложкой, которая снимается по мере наклеивания покрытия на фотоэлементы и акриловое стекло. | |
Первое, что необходимо сделать — это разложить пленку сверху конструкции и выровнять край, от которого начнется ее наклеивание. От того, насколько будет выровнен край, зависит качество приклеивания всего полотна. Должна быть достигнута полная герметизация, без складок и пустот, так как пленка предназначена для надежной защиты фотоэлементов от любых внешних воздействий. | |
Далее, необходимо аккуратно отделить защитный слой от пленки по всему краю, примерно на 40 мм, сразу закрепив ее на стекле. | |
Эта операция проводится очень аккуратно, при приклеивании пленка разравнивается и разглаживается. Здесь необходимо помнить, что отклеить и выровнять определенный участок пленки — уже не получится, поэтому необходимо делать работу качественно сразу. Пленку нельзя натягивать, но в то же время она и не должна собираться складками. | |
Защитная подложка подгибается вниз и по мере приклеивания постепенно снимается. Освободив 20÷30 мм пленки, ее приглаживают к фотоэлементам и просветам между ними, то есть к акриловому стеклу. | |
Процесс закатывания батареи в пленку — длительный и кропотливый, поэтому необходимо набраться терпения и выполнять его, не торопясь. Если пленка все-таки замялась или ушла в сторону, ее нельзя отклеивать, так как повредятся фотоэлементы. В этом случае необходимо вырезать и наклеить сверху уже закрепленной пленки дополнительный фрагмент. Главное — закрыть всю поверхность батареи. На этой иллюстрации показан закатанный в пленку край панели. Хорошо видно, что идеальная гладкость не требуется, главное — плотное прилегание пленки по всей площади. | |
Когда пленка будет наклеена, можно проводить испытания готовой панели. Для этого батарею необходимо вынести на солнце и снова подключить к ней тестер. | |
Как можно видеть, батарея выдает напряжение на выходах почти 20 вольт. Затем проверяется ток короткого замыкания — он составил 3.94 ампер. А это уже, ни много, ни мало – почти 80 ватт. | |
Для проверки под нагрузкой к батарее через амперметр была подключена лампочка на 24 В. Итог на фотографии – горит хоть и не в полный накал, но достаточно ярко. |
Многие мастера, кроме стекла и пленки, используют еще и обрамление батареи, одевая ее в жесткую раму. Это придает конструкции необходимую прочность и повышает ее надежность.
Если планируется собрать и использовать несколько солнечных батарей, то их соединяют или последовательно — для увеличения напряжения на выходе, или параллельно – так можно добиться более высоких показателей тока и суммарной мощности
Комплекс панелей через контроллер подключается к аккумулятору — накопителю энергии, а уже от него идет распределение на точки потребления, напрямую или через инвертор.
Узнайте, как сделать солнечный коллектор своими руками, из нашей новой статьи на нашем портале.
* * * * * * *
Итак, как можно видеть из представленной информации, батарею вполне можно собрать своими руками. Потребуется наличие некоторых знаний электротехники и монтажа, усидчивость и внимательность.
Другое дело — что предварительно стоить очень тщательно взвесить ожидаемый эффект от батареи и стоимость комплектующих и всего необходимого для системы оборудования. Насколько система получится рентабельной, тем более с учетом местных климатических условий? Не превратится ли ее создание просто в «игрушку» для деятельного мужчины среднего возраста?
Возможно, некоторые вопросы по этому поводу снимет размещенный ниже видеосюжет:
Видео: Основные ошибки, допускаемые начинающими при планировании создания домашних солнечных электростанций
Сколько нужно солнечных батарей для квартиры
Солнечная энергия – бесплатна. И ученые с лихвой пользуются этим. Использование солнца в собственных целях – стало трендом последних десятилетий. Уже многие годы мы пользуемся карманными калькуляторами и фонариками, которые заряжаются, просто полежав на солнце. С помощью энергии нашего светила работают автомобили. Солнце стало давно незаменимым источником энергии в сфере космических технологий. А главное, солнечная энергия все чаще используется в ежедневных целях, при этом существенно экономя наши деньги. Речь идет об электрификации и отоплении домов.
Все чаще на жилища ставят солнечные панели, чтобы с их помощью питать домашние бытовые приборы или даже отапливать целый дом. Проходя мимо загородных домов где-то в Америке, на многих крышах можно увидеть батареи, которые используют солнечную энергию для выработки электричества. Но не многие знают, что не только частные дома могут воспользоваться преимуществами солнечных лучей. Также панели можно поставить и владельцам квартир. А для того, чтобы узнать, сколько нужно солнечных батарей для квартиры, нужно знать некоторые нюансы.
Балкон – отличное место, чтобы “ловить” солнце
Конечно же, местом, куда можно установить солнечные батареи в многоэтажном доме будет балкон. Не считая квартир, которые находятся под крышей. В таких случаях, панели могут разместить и над квартирами.
Солнечные батареи бывают разных размеров. На крышах частных домов можно установить большие панели. В то время как в квартирах места для размещения оборудования не так много. На балконе панели должны быть небольшими по размеру, но мощными. А так как сила зависит от размеров, при вопросе, сколько нужно солнечных батарей для квартиры, нужно искать компромиссное решение.
От чего зависит, сколько нужно солнечных батарей для квартиры?
Число батарей для квартиры зависит от размеров самого балкона. Аккумулятор можно повесить под потолком. Сами солнечные панели крепятся к стеклу или к раме окон.
Также количество панелей на балконе исходит из мощности солнечных батарей, которая зависит от материала панелей. Например, метр квадратный из монокристаллического кремния дает до 125 Вт, а аморфный кремний – 50 Вт. Если выберете батареи из последнего материала, соответственно потребуется больше панелей.
Нельзя забывать, что на балконе обязательно должна быть система отопления или его нужно утеплить по всему периметру. Батареи чувствительны к холодам. И зимой будут работать с потерями. Поэтому при покупке солнечных батарей следует учитывать все ранее озвученные нюансы.
СМОТРИТЕ ТАКЖЕ:
Основной принцип работы солнечных батарей
Плюсы и минусы перехода на электроснабжение от солнечных батарей
Какое количество электроэнергии вырабатывается солнечными батареями
Интересная публикация?
Поделись с друзьями!
Больше интересного
Мой личный опыт использования солнечных панелей без подключения к РЭС / Habr
В статье описывается самый обычный эксперимент с получением электрической энергии от солнца.Предыстория
Захотел я переехать из города на природу. Требования были следующие:
- Недалеко от Киева, рассматривались участки до 30км
- Недалеко от родителей моих и супруги, которые остаются в Киеве
- Поменьше людей, побольше природы.
В результате было выбрано с. Зазимье, Броварского района. 10 километров до границы города. Удобно ехать домой на такси, если с машиной что-то не так. Был выбран участок, куплен. А потом местная энергокомпания «развела руками». Я был в шоке. Я рассчитывал решить вопрос максимум за 5K$, а получилось «как всегда». Таким образом я пришел к альтернативным источникам получения электроэнергии.
Первый опыт был интересным. Фундамент мы заливали с помощью генератора FIRMAN на 950Вт, небольшой бетономешалки (40л) и по выходным. Все это помещалось в Славуту. Был построен небольшой дом 18м2+чердак, на простом каркасе, в котором мы сейчас и обитаем время от времени. В основном в теплое время, конечно. Рядом в селе снимаем кусок дома на зимнее время. Речь и пойдет об электрификации этого дома.
Начало
Были куплены две солнечные панели китайского производства по 180Вт каждая. Был куплен контроллер ШИМ EPSOLAR на 20А. Два свинцово-кислотных аккумулятора по 100Ач достались по очень льготной цене и инвертор FORT FX55. Позднее мне еще подарили автомобильный преобразователь 12-220 на 300Вт. А до этого я еще купил на 150Вт без вентиляторный автомобильный преобразователь.
С оборудованием разобрались.
Вот снимок характеристик одной панели:
Вот то, что панели выдают на ХХ:
Фотография сразу после установки на крышу:
Быт, потребление
Живу я, сами понимаете, ИТ-жизнью. Убежденный фрилансер, периодически пытаюсь создать что-то большее чам самостоятельный фриланс. Кому интересно, можете зайти ко мне в гости
Все вышеописанное питает: Macbook Pro 2010, телефоны, книжки, планшеты, 3G-роутер, принтер HP LaserJet 1020. Зарядка шуруповерта, насосная станция для воды 1100Вт, пару прожекторов на улицу с датчиками движения и освещенности. Освещение в доме светодиодное 12В.
Есть так же генератор 2,5КВт Кентавр. 4-х тактный. Масло отдельно, а 95-й бензин отдельно. Расход 0,5л в час. Очень экономно получется. На нем сейчас работает бетономешалка, когда она требуется.
На кухне в мелком доме сейчас стоит газовый баллон на 4,8л, без редуктора. Типа «туристический», но работает постоянно. Хватает на две недели при готовке три раза в день. Мимо АГЗС проезжаю регулярно, так что с заправкой проблем нет.
Вот как мое хозяйство выглядело этой зимой:
Большой дом и планы на него
Как я уже писал, изначально планировалась сеть для него, поэтому куплен инвертор FORT FX55 (3500Вт / 5500Вт пусковой). Крыша спроектирована под 20 солнечных панелей 180Вт, что бы они «стали на угол 50 градусов». Широта у меня такая. Где-то вычитал, что на нашей широте и ставить надо под углом 50 градусов — это самый оптимальный угол. Аккумуляторы куплю гелевые, поставлю отдельный новый контроллер.
Будет печка, с которой я на освещение буду снимать зимой электричество (см. ru.wikipedia.org/wiki/Элемент_Пельтье). Так же с печки будет «снято»: горячая вода, водяное отопление (пол + батареи). Печка будет «двухколпаковая». Для эстетики добавлю камин.
На кухне газовая плита и газовая же (ох, и трудно было найти ) духовка. Встроенная в мебель.
Вопросы? Комментарии?
Оговорюсь сразу, что несмотря на 4 балла по ТОЭ, основы электротехники я совсем не помню. Ну разве что закон Ома, который является частным случаем Второго правила Кирхгофа. Все делалось по логике и вычитанному из интернета.
Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях
Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения. Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями. Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.
Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.
Содержание
Принцип работы солнечной батареи
Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом. Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое. Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния. Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.
КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.
Технические характеристики
Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:
- Непосредственно фотоэлементы / солнечная панель;
- Инвертор, преобразовывающий постоянный ток в переменный;
- Контроллер уровня заряда аккумулятора.
Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.
Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.
(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)
Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.
Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.
Установка солнечных батарей
Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.
Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.
Солнечная батарея своими руками
Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.
Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.
Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.
Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.
Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.
Современные устройства со встроенными солнечными модулями
- Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
- Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
- Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.
Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.