Термическое сопротивление теплопередачи – 1. Теплопередача через плоские и цилиндрические стенки. Термическое сопротивление теплопередачи через плоские и цилиндрические стенки. Коэффициент теплопередачи; интенсификация теплопередачи.

Содержание

Сопротивление теплопередаче ограждающих конструкций — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 марта 2013; проверки требует 71 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 25 марта 2013; проверки требует 71 правка.

Сопротивление теплопередаче ограждающих конструкций, коэффициент теплосопротивления, теплосопротивление, термическое сопротивление — один из важнейших теплотехнических показателей строительных материалов.

При общих равных условиях, это отношение разности температур на поверхностях ограждающей конструкции к величине мощности теплового потока (теплопередача за один час через один квадратный метр площади поверхности ограждающей конструкции, Q˙A{\displaystyle {\dot {Q}}_{A}}) проходящего сквозь нее, то есть R=ΔT/Q˙A{\displaystyle R=\Delta T/{\dot {Q}}_{A}}. Сопротивление теплопередаче отражает теплозащитные свойства ограждающей конструкции и складывается из термических сопротивлений отдельных однородных слоев конструкции.

В Международной системе единиц (СИ) сопротивление теплопередаче ограждающей конструкции измеряется разностью температуры в кельвинах (либо в градусах Цельсия) у поверхностей этой конструкции, требуемой для переноса 1 Вт мощности энергии через 1 м2 площади конструкции (м2·K/Вт или м2·°C/Вт).

Термическое сопротивление отдельного слоя ограждающей конструкции или однородного ограждения[1]R=δλ{\displaystyle R={\frac {\delta }{\lambda }}}, где δ — толщина слоя материала (м), λ — коэффициент теплопроводности материала[2]

(Вт/[м·°С]). Чем больше полученное значение R, тем выше теплозащитные свойства слоя материала. Сопротивление теплопередаче ограждающей конструкции равно сумме термических сопротивлений слоев из однородных материалов, составляющих эту конструкцию.

Для примера рассчитаем теплопотери помещения верхнего этажа дома через крышу. Примем температуру внутреннего воздуха +20°С , а наружного −10°С. Таким образом, температурный перепад составит 30°С (или 30 К). Если, например, потолок комнаты со стороны крыши изолирован стекловатой с низкой плотностью толщиной 150 мм, то сопротивление теплопередачи крыши составит около R=2,5 кв.м*град/Вт. При таких значениях температурного перепада и сопротивления теплопередаче, теплопотери через один квадратный метр крыши равны: 30 / 2,5 = 12 Вт. При площади потолка комнаты 16 м

2 мощность оттока тепла только через потолок составит 12*16=192 Вт.

Согласно «СНиП 1954» R многослойных ограждений = Rв + R1 + R2 + … + Rн, где Rв — сопротивление теплопереходу у внутренней поверхности ограждения, R1 и R2 — термические сопротивления отдельных слоёв ограждения, Rн — сопротивление теплопереходу у наружной поверхности ограждения[1].

Теплопроводность некоторых материалов[править | править код]

МатериалВ сухом состоянии
(нулевая влажность)
λ, Вт/м·°C
При влажности в условиях эксплуатации «Б»
λ, Вт/м·°C
Влажность
%[3]
Кладка из полнотелого керамического кирпича на цементно-песчаном растворе0,560,812
Кладка из полнотелого силикатного кирпича на цементно-песчаном растворе0,70,874
Сосна и ель поперёк волокон0,090,1820
Фанера клееная0,120,1813
Плиты древесно-волокнистые и древесно-стружечные плотностью 200 кг/м30,060,0812
Опилки древесные0,09 Вт/м·°C
(0,08 ккал/м·час·°C[4])
(средняя влажность в наружных ограждениях)
Листы гипсовые обшивочные (сухая штукатурка) плотностью 800 кг/м30,150,216
Плиты минераловатные из каменного волокна плотностью 180 кг/м30,0380,0485
Плиты из пенополистирола плотностью до 10 кг/м30,0490,05910
  • Свод правил СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 / Минрегион России. — М., 2012. — 96 с.
  • Глава 3. Строительная теплотехника : § 3. Нормы сопротивления теплопередаче ограждений // Строительные нормы и правила. Часть II. Нормы строительного проектирования / Гос. ком. Совета Министров СССР по делам строительства. —
    М.
    : Гос. изд-во лит. по стр-ву и архитектуре, 1954. — С. 150—154. — 404 с.

1.2 Теплопроводность строительных материалов

Характеризуется коэффициентом теплопроводности λ, Вт/м· оС, выражающим количество тепла, проходящего через 1 м2 ограждения при его толщине 1 метр и при разности температур на внутренней и наружной поверхности ограждения 1 оС.

На коэффициент теплопроводности материала влияют следующие свойства материала.

Плотность (пористость): чем больше в материале замкнутых пор, тем меньше коэффициент теплопроводности, поскольку любого плотного материала не менее чем в 100 раз превышает воздуха.

  • Химико-минералогический состав. Любой строительный материал имеет в своем составе кристаллические и аморфные вещества в различных соотношениях. Чем выше процент кристаллических веществ, тем больше коэффициент теплопроводности.

  • Собственная температура материала. Чем она выше, тем большей теплопроводностью обладает конструкция.

  • Влажность материала. При увлажнении конструкции в поры, заполненные воздухом, попадает вода, коэффициент теплопроводности которой выше, чем у воздуха, приблизительно в 20 раз. Поэтому теплопроводность материала резко возрастает, возникает опасность промерзания ограждающей конструкции. При промерзании конструкции вода, находящаяся в порах, превращается в лёд, коэффициент теплопроводности которого выше, чем у воды, еще в 4 раза. Поэтому так важно не допускать переувлажнения ограждающих конструкций.

Наибольшим коэффициентом теплопроводности обладают металлы: сталь — 50 Вт/м·оС, алюминий — 190 Вт/м·оС, медь — 330 Вт/м·оС. Наименьший коэффициент теплопроводности у эффективных утеплителей, пенополистирола и пенополиуретана: 0,03-0,04 Вт/м·оС.

1.3 Термическое сопротивление (сопротивление теплопередаче)

R, м2·оС /Вт, — важнейшее теплотехническое свойство ограждения. Оно характеризуется разностью температур внутренней и наружной поверхности ограждения, через 1 м2 которого проходит 1 ватт тепловой энергии (1 килокалория в час).

, (2)

где δ — толщина ограждения, м;

λ — коэффициент теплопроводности, Вт/м·оС.

Чем больше термическое сопротивление ограждающей конструкции, тем лучше её теплозащитные свойства. Из формулы (2) видно, что для увеличения термического сопротивления R необходимо либо увеличить толщину ограждения δ, либо уменьшить коэффициент теплопроводности λ, то есть использовать более эффективные материалы. Последнее более выгодно из экономических соображений.

2. Теплопередача в однородном ограждении при установившемся потоке тепла

Представим себе условную ограждающую конструкцию, состоящую из однородного материала, через которую в холодное время года проходит постоянный тепловой поток. В этом случае график распределения температуры внутри ограждения выглядит следующим образом (рис. 1).

Рис. 1. Распределение температур в однородной ограждающей конструкции при постоянном тепловом потоке

При передаче тепла через ограждающую конструкцию происходит падение температуры от tв до tн. При этом общий температурный перепад tвtнсостоит из суммы трех температурных перепадов:

  1. температурный перепад t

    вв возникает из-за того, что температура внутренней поверхности ограждения τв всегда на несколько градусов ниже, чем температура воздуха в помещении tв;

  2. τвн— температурный перепад в пределах толщины ограждающей конструкции;

  3. τнtн — температурный перепад, возникающий вследствие того, что температура наружной поверхности ограждения

    τн несколько выше температуры наружного воздуха tн.

Каждый из этих температурных перепадов вызван конкретным сопротивлением переносу тепла:

  1. перепад tвв сопротивлением тепловосприятию внутренней поверхности ограждения Rв;

  2. перепад τвнтермическим сопротивлением конструкции Rк;

  3. перепад τнtнсопротивлением теплоотдаче наружной поверхности ограждения Rн.

Сопротивления тепловосприятию и теплоотдаче иногда называют сопротивлениями теплообмену; они имеют такую же размерность, как и термическое сопротивление, т. е. м2· оС/Вт.

Общее (приведенное) термическое сопротивление однослойной ограждающей конструкции Ro, м2· оС/Вт, равно сумме всех отдельных сопротивлений, т. е.

, (3)

где αв— коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2·оС), определяемый по табл. 4* [1], см. также табл. 5 настоящего пособия;

αн — коэффициент теплоотдачи наружной поверхности ограждающих конструкций, Вт/(м2·оС), определяемый по табл. 6* [1], см. также табл. 6 настоящего пособия;

Rк— термическое сопротивление однослойной конструкции, определяемое по формуле (2).

Что такое теплопроводность и термическое сопротивление, формула расчета теплового сопротивления — СамСтрой

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.

Что такое теплопроводность и термическое сопротивление

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала

Коэффициент теплопроводности Вт/(м·°C)

В сухом состоянии

При нормальной влажности

При повышенной влажности

Войлок шерстяной

0,036-0,041

0,038-0,044

0,044-0,050

Каменная минеральная вата 25-50 кг/м3

0,036

0,042

0,,045

Каменная минеральная вата 40-60 кг/м3

0,035

0,041

0,044

Каменная минеральная вата 80-125 кг/м3

0,036

0,042

0,045

Каменная минеральная вата 140-175 кг/м3

0,037

0,043

0,0456

Каменная минеральная вата 180 кг/м3

0,038

0,045

0,048

Стекловата 15 кг/м3

0,046

0,049

0,055

Стекловата 17 кг/м3

0,044

0,047

0,053

Стекловата 20 кг/м3

0,04

0,043

0,048

Стекловата 30 кг/м3

0,04

0,042

0,046

Стекловата 35 кг/м3

0,039

0,041

0,046

Стекловата 45 кг/м3

0,039

0,041

0,045

Стекловата 60 кг/м3

0,038

0,040

0,045

Стекловата 75 кг/м3

0,04

0,042

0,047

Стекловата 85 кг/м3

0,044

0,046

0,050

Пенополистирол (пенопласт, ППС)

0,036-0,041

0,038-0,044

0,044-0,050

Экструдированный пенополистирол (ЭППС, XPS)

0,029

0,030

0,031

Пенобетон, газобетон на цементном растворе, 600 кг/м3

0,14

0,22

0,26

Пенобетон, газобетон на цементном растворе, 400 кг/м3

0,11

0,14

0,15

Пенобетон, газобетон на известковом растворе, 600 кг/м3

0,15

0,28

0,34

Пенобетон, газобетон на известковом растворе, 400 кг/м3

0,13

0,22

0,28

Пеностекло, крошка, 100 – 150 кг/м3

0,043-0,06

Пеностекло, крошка, 151 – 200 кг/м3

0,06-0,063

Пеностекло, крошка, 201 – 250 кг/м3

0,066-0,073

Пеностекло, крошка, 251 – 400 кг/м3

0,085-0,1

Пеноблок 100 – 120 кг/м3

0,043-0,045

Пеноблок 121- 170 кг/м3

0,05-0,062

Пеноблок 171 – 220 кг/м3

0,057-0,063

Пеноблок 221 – 270 кг/м3

0,073

Эковата

0,037-0,042

Пенополиуретан (ППУ) 40 кг/м3

0,029

0,031

0,05

Пенополиуретан (ППУ) 60 кг/м3

0,035

0,036

0,041

Пенополиуретан (ППУ) 80 кг/м3

0,041

0,042

0,04

Пенополиэтилен сшитый

0,031-0,038

Вакуум

0

Воздух +27°C. 1 атм

0,026

Ксенон

0,0057

Аргон

0,0177

Аэрогель (Aspen aerogels)

0,014-0,021

Шлаковата

0,05

Вермикулит

0,064-0,074

Вспененный каучук

0,033

Пробка листы 220 кг/м3

0,035

Пробка листы 260 кг/м3

0,05

Базальтовые маты, холсты

0,03-0,04

Пакля

0,05

Перлит, 200 кг/м3

0,05

Перлит вспученный, 100 кг/м3

0,06

Плиты льняные изоляционные, 250 кг/м3

0,054

Полистиролбетон, 150-500 кг/м3

0,052-0,145

Пробка гранулированная, 45 кг/м3

0,038

Пробка минеральная на битумной основе, 270-350 кг/м3

0,076-0,096

Пробковое покрытие для пола, 540 кг/м3

0,078

Пробка техническая, 50 кг/м3

0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Название материала, плотность

Коэффициент теплопроводности

в сухом состоянии

при нормальной влажности

при повышенной влажности

ЦПР (цементно-песчаный раствор)

0,58

0,76

0,93

Известково-песчаный раствор

0,47

0,7

0,81

Гипсовая штукатурка

0,25

Пенобетон, газобетон на цементе, 600 кг/м3

0,14

0,22

0,26

Пенобетон, газобетон на цементе, 800 кг/м3

0,21

0,33

0,37

Пенобетон, газобетон на цементе, 1000 кг/м3

0,29

0,38

0,43

Пенобетон, газобетон на извести, 600 кг/м3

0,15

0,28

0,34

Пенобетон, газобетон на извести, 800 кг/м3

0,23

0,39

0,45

Пенобетон, газобетон на извести, 1000 кг/м3

0,31

0,48

0,55

Оконное стекло

0,76

Арболит

0,07-0,17

Бетон с природным щебнем, 2400 кг/м3

1,51

Легкий бетон с природной пемзой, 500-1200 кг/м3

0,15-0,44

Бетон на гранулированных шлаках, 1200-1800 кг/м3

0,35-0,58

Бетон на котельном шлаке, 1400 кг/м3

0,56

Бетон на каменном щебне, 2200-2500 кг/м3

0,9-1,5

Бетон на топливном шлаке, 1000-1800 кг/м3

0,3-0,7

Керамическийй блок поризованный

0,2

Вермикулитобетон, 300-800 кг/м3

0,08-0,21

Керамзитобетон, 500 кг/м3

0,14

Керамзитобетон, 600 кг/м3

0,16

Керамзитобетон, 800 кг/м3

0,21

Керамзитобетон, 1000 кг/м3

0,27

Керамзитобетон, 1200 кг/м3

0,36

Керамзитобетон, 1400 кг/м3

0,47

Керамзитобетон, 1600 кг/м3

0,58

Керамзитобетон, 1800 кг/м3

0,66

ладка из керамического полнотелого кирпича на ЦПР

0,56

0,7

0,81

Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)

0,35

0,47

0,52

Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)

0,41

0,52

0,58

Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)

0,47

0,58

0,64

Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)

0,7

0,76

0,87

Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот

0,64

0,7

0,81

Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот

0,52

0,64

0,76

Известняк 1400 кг/м3

0,49

0,56

0,58

Известняк 1+600 кг/м3

0,58

0,73

0,81

Известняк 1800 кг/м3

0,7

0,93

1,05

Известняк 2000 кг/м3

0,93

1,16

1,28

Песок строительный, 1600 кг/м3

0,35

Гранит

3,49

Мрамор

2,91

Керамзит, гравий, 250 кг/м3

0,1

0,11

0,12

Керамзит, гравий, 300 кг/м3

0,108

0,12

0,13

Керамзит, гравий, 350 кг/м3

0,115-0,12

0,125

0,14

Керамзит, гравий, 400 кг/м3

0,12

0,13

0,145

Керамзит, гравий, 450 кг/м3

0,13

0,14

0,155

Керамзит, гравий, 500 кг/м3

0,14

0,15

0,165

Керамзит, гравий, 600 кг/м3

0,14

0,17

0,19

Керамзит, гравий, 800 кг/м3

0,18

Гипсовые плиты, 1100 кг/м3

0,35

0,50

0,56

Гипсовые плиты, 1350 кг/м3

0,23

0,35

0,41

Глина, 1600-2900 кг/м3

0,7-0,9

Глина огнеупорная, 1800 кг/м3

1,4

Керамзит, 200-800 кг/м3

0,1-0,18

Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3

0,23-0,41

Керамзитобетон, 500-1800 кг/м3

0,16-0,66

Керамзитобетон на перлитовом песке, 800-1000 кг/м3

0,22-0,28

Кирпич клинкерный, 1800 – 2000 кг/м3

0,8-0,16

Кирпич облицовочный керамический, 1800 кг/м3

0,93

Бутовая кладка средней плотности, 2000 кг/м3

1,35

Листы гипсокартона, 800 кг/м3

0,15

Сопротивление теплопередаче строительных материалов

Строительство зданий требует соблюдения большого количества нюансов, факторов, способных повлиять на качество постройки. Существуют стандарты, нормы, от которых отходить не рекомендуется. До начала строительства необходимо создать план, произвести расчеты. Коэффициент сопротивления теплопередаче показывает, насколько быстро материалы пропустят холод с улицы в жилье.

Правильно рассчитать теплопередачу приведенного материала так же важно, как и другие данные. От полученных результатов зависит то, насколько жилище будет теплым, какие в нем показатели экономии тепла. Можно примерно рассчитать расход на энергию, затрачиваемую на отопление дома. Кроме того, будет ясна прочность, надежность сооружения.

Стенам и иным частям дома свойственно при больших морозах промерзание. Если не учитывать правила теплопередачи, дом может промерзнуть насквозь. Заморозка-размораживание приводит к скорейшему износу частей жилища, они ветшают, после чего здание может стать аварийным. Высокое сопротивление теплопроводности наружных стен и дверей помогает справиться с проникновением холода.

Показатели теплопроводности

Любой элемент в природе имеет различную степень проводимости. Тепло проходит сквозь него в зависимости от скорости движения частиц, которые способны передать температурные колебания. Чем частицы ближе находятся одна к другой, тем теплообмен будет проходить быстрее. Получается, что чем более плотный материал, тем быстрее он будет нагреваться или остывать. Плотность является основным фактором теплопередачи, показывая ее интенсивность.Таблица с данными для камня

Выражается данный показатель коэффициентом теплопроводности. Обозначение буквенное производится символом «λ». Единица измерения Вт/(м*Со). Чем больше численные данные этого коэффициента, тем лучше материал проводит тепло. Существует величина, обратная проводимости тепла, которая называется тепловое термическое сопротивление. Единица измерения: м2о/Вт. Буквенное обозначение «R».

Данные по регионам

Нормируемое сопротивление можно посмотреть в справочниках. Важно придерживаться норм, чтобы не пришлось дополнительно утеплять дом, так как холод легко проникает сквозь стены. Правильному теплообмену, такому, какой бы подходил для данного региона, должно предшествовать утепление стен и верное использование материалов.

Значения по регионам

Как применяются показатели в строительстве

Для каждого материала, используемого в строительстве, важно определить степень проводимости тепла. Теплоизоляционные свойства влияют на скорость промерзания стен, насколько материал подвержен воздействию холода. Показатель сопротивления при теплопередаче для любого современного материала уже вписан в справочники.

Современные технологии предполагают использование нескольких слоев для стен, дверей, поэтому показатели тепловой проводимости в них могут объединяться. Для показа общей степени проводимости принята величина «приведенное сопротивление теплопередаче».Таблица с данными для стеклопакетов

Рассчитать ее можно точно так же, как и предыдущие данные. Но учитывать следует несколько показателей теплопроводности. Второй вариант произведения расчетов теплоотдачи – использование однородного аналога многослойной стенки. Он должен пропускать такое же количество тепла за равный промежуток времени. Разница в температурах для внутренней части помещения и внешней должна быть одинаковой.

Расчет приведенного сопротивления производится не на квадратный метр, а на целую комнату или весь дом. Показатель помогает обобщить данные о проводимости тепла всего жилища, а точнее материалов, из которых оно изготовлено. Сопротивление для пола также необходимо учитывать.

Термическое сопротивление

Любая стена, дверь, окно служит для ограждения от внешних природных воздействий. Они способны в разной степени защитить жилище от холодов, так как коэффициент проводимости у них отличается. Для каждого ограждения коэффициент рассчитываться должен по-разному. Точно так же ведется расчет для внутренних перегородок, стен, дверей, неотапливаемых частей дома.

Если в здании имеются части, которые не протапливаются, необходимо утеплять стены между ними и другими помещениями так же качественно, как и внешние. Воздух – плохой переносчик тепла, потому что там частицы находятся на значительном отдалении друг от друга. Выходит, что если изолировать некоторые воздушные массы герметично, получится неплохая изоляция от холода. Для уточнения данных производится расчет приведенного сопротивления. Данные показывают, насколько хорошо утеплено жилище, нет ли необходимости в дополнительном утеплении.Современные материалы

В старых домах делали всегда по две рамы, чтобы между ними находилось некоторое количество воздушных масс. Теперь по такому же принципу делаются стеклопакеты, но воздух между стеклами откачивается полностью, чтобы частиц, проводящих тепло, вообще не было. Термическое сопротивление в них значительно превышает показатели старых окон. Входные двери делаются по такому же принципу. Стараются сделать небольшой коридор, предбанник, который сохранит тепло в доме.

Если в жилище установить дополнительные резиновые уплотнители в несколько слоев, это позволит повысить теплоизоляционные свойства. Современные входные двери создаются многослойными, там помещается несколько разных слоев утеплительного материала. Конструкция становится практически герметичной, дополнительное утепление часто не требуется. Сопротивление теплопередаче стен обычно не такое хорошее, потому используются дополнительные материалы для утепления.

Как рассчитывается тепловое сопротивление

Данные после расчета теплового сопротивления помогут показать, насколько хорошо утеплен дом, какое количество тепла теряется в процессе. Таким образом, можно точно подобрать оборудование для утепления, правильно рассчитать мощность. Для примера будет произведен расчет одной из стен и дверей каркасного дома с керамическим кирпичом, что поможет понять, насколько хороши данные материалы для строительства и утепления.Утепление изнутри

Класс сопротивления для каждого материала разный. С обратной стороны он утеплен экструдированным пенополистиролом, толщина которого составляет 100 мм. Стены по толщине будут в два кирпича, что равняется 500 мм. Формула для вычисления сопротивления:

R = d/λ, где d – толщина компонентов стены, λ – коэффициент теплопроводности.

По справочнику необходимо посмотреть данные λ. Это число 0,56 для кирпича и 0,036 – для полистирола.

R = 0,5 / 0,56 = 0,89 – для кирпича.

R = 0,1 / 0,036 = 2,8 – для полистирола.

Общий показатель будет суммой этих величин. R = 0,89 + 2,8 = 3,59. Данная формула с приведенными данными имеет численное значение. Его можно сравнить с показаниями с улицы, верными в вашем регионе, и понять, правильно ли применены утеплители. Можно определить класс по приведенному выше сопротивлению.

Теплые конструкции

Для увеличения теплового термического сопротивления следует использовать современные материалы, в которых показатели проводимости тепла максимально низкие. Количество таких материалов сейчас увеличивается. Популярными стали:

  1. Деревянные конструкции. Считаются экологически чистым материалом, потому многие предпочитают вести строительство, используя именно этот компонент. Использоваться может любой вид окультуренной древесины: сруб, бревно, брус. Чаще применяют сосну, ель или кедр, показатели проводимости которых по сравнению с другими материалами достаточно низкие. Необходимо произвести защиту от атмосферных воздействий, вредителей. Материал покрывается дополнительным слоем, защищающим от негативных факторов.
  2. Керамические блоки.
Пример защиты от внешнего воздуха
  1. Сэндвич-панели. В последнее время этот материал становится все более популярным. Основные преимущества: дешевизна, высокие показатели сопротивляемости холоду. В материале имеется множество воздушных ячеек, иногда делают «пенную» структуру. Например, некоторые типы панелей имеют вертикальные воздушные каналы, которые неплохо защищают от холода. Другие компоненты делаются пористыми, чтобы большое количество заключенного воздуха помогло справиться с поступающим холодом.
  2. Керамзитобетонные материалы. Их использование также позволит надежно защитить жилище от холода.
  3. Пеноблоки. Конструкция делается пористой, но достигается это не простым вклиниванием воздушных прослоек, а путем произведения химической реакции. Иногда в цемент добавляется пористый материал, который поверху покрывается застывшим раствором.

Важные моменты для применения утеплительных материалов

При проектировании жилища необходимо учитывать погодные условия местности. Если данные не учтены, термическое сопротивление теплопередаче может быть недостаточным, что позволит холоду проникать сквозь стены. Обычно, если такое происходит, используются утеплители. Иногда утепление производится внутри дома, но обычно оно проводится по наружным стенам. Утепляются несущие элементы и части, расположенные в непосредственном контакте с улицей.Утепление жилища

Показатели современных теплоизоляционных материалов очень высокие, потому их не нужно использовать в большом количестве. Обычно для утепления хватает толщины до 10 мм. Не стоит забывать о паропроницаемости стен, дверей и утеплительных компонентов. Правила строительства требуют, чтобы этот показатель повышался из внутренних частей к внешним. Потому утеплять газобетонные или пенобетонные стены можно только минеральной ватой, показатели которой верны для приведенных требований.Внутреннее утепление

 

Кроме потерь тепла через стены дома оно может уходить через кровлю. Поэтому важно утеплять не только наружные элементы, но и уложить материал над потолком, чтобы жилье было надежно утеплено. Если нет возможности применять необходимый материал, можно сконструировать зазор для вентиляции. В любом случае не стоит забывать, что теплосопротивление для материалов является одной из важнейших величин. Обязательно учитывайте его при возведении нового дома.

 

 

1. Теплопередача через плоские и цилиндрические стенки. Термическое сопротивление теплопередачи через плоские и цилиндрические стенки. Коэффициент теплопередачи; интенсификация теплопередачи.

Теплопередача через плоскую стенку

Передача теплоты от одной подвижной среды (жидкости или газа) к другой через разделяющую их твердую стенку любой формы называется теплопередачей. Примером теплопередачи служит перенос теплоты от дымовых газов к воде через стенки труб парового котла, включающий в себя конвективную теплоотдачу от горячих дымовых газов к внешней стенке, теплопроводность в стенке и конвективную теплоотдачу от внутренней поверхности стенки к воде. Особенности протекания процесса на границах стенки при теплопередаче характеризуются граничными условиями третьего рода, которые задаются температурами жидкости с одной и другой стороны стенки, а также соответствующими значениями коэффициентов теплоотдачи.

Рис. 12.1. Теплопередача через плоскую стенку

Рассмотрим процесс теплопередачи через однородную плоскую стенку толщиной δ (рис. 12.1). Заданы: коэффициент теплопроводности стенки λ, температуры окружающей среды tж1 и tж2, коэффициенты теплоотдачи α1 и α2. Необходимо найти тепловой поток от горячей жидкости к холодной и температуры на поверхностях стенки tс1 и tс2. Плотность теплового потока от горячей среды к стенке определится уравнением (9.14) .

При стационарном режиме этот же тепловой поток пройдет путем теплопроводности через

твердую стенку и будет передан от второй поверхности стенки к холодной среде за счет теплоотдачи: ; .

Перепишем приведенные уравнения в виде:

Складывая левые и правые части полученных равенств, запишем

Отсюда ,

(12.6)

где .

(12.7)

Величина k называется коэффициентом теплопередачи, который выражает количество теплоты, проходящее через единицу поверхности стенки в единицу времени при разности температур между горячей холодной и горячей жидкостью, равной 1К (размерность Вт/(м2·К)). Величина обратная коэффициенту теплопередачи, называется полным термическим сопротивлением теплопередачи

(12.8)

Величины и называются термическими сопротивлениями теплоотдачи. Температуры на поверхностях однородной стенки определяются из уравнений:

(12.9)

(12.10)

12.3.Пути интенсификации теплопередачи

При неизменной разности температур между горячим и холодным теплоносителями передаваемый тепловой поток зависит от коэффициента теплопередачи. Так как теплопередача представляет собой сложное явление, рассмотрение путей ее интенсификации связано с анализом частных составляющих процесса. В случае плоской стенки .

Увеличение k может быть достигнуто за счет уменьшения толщины стенки и выбора более теплопроводного материала. Если термическое

сопротивление теплопроводности стенки мало, то при

Отсюда видно, что коэффициент теплопередачи всегда меньше самого малого из коэффициентов теплоотдачи. Следовательно, для увеличения коэффициента теплопередачи нужно увеличивать наименьшее из значений коэффициентов теплоотдачи α1 или α2. Если α1»α2, то необходимо увеличивать и α1 и α2 одновременно.

Если увеличить наименьший коэффициент теплоотдачи не удается, теплообмен можно интенсифицировать путем оребрения стенки со стороны меньшего коэффициента теплоотдачи.

Теплопроводность — Википедия

Теплопрово́дность — способность материальных тел проводить энергию (теплоту) от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q→=−ϰgrad(T),{\displaystyle {\vec {q}}=-\varkappa \,\mathrm {grad} (T),}

где q→{\displaystyle {\vec {q}}} — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ{\displaystyle \varkappa } — коэффициент теплопроводности (удельная теплопроводность), T{\displaystyle T} — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad(T){\displaystyle \mathrm {grad} (T)} (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P=−ϰSΔTl,{\displaystyle P=-\varkappa {\frac {S\Delta T}{l}},} [Вт/(м·К) · (м2·К)/м = Вт/(м·К) · (м·К) = Вт]

где P{\displaystyle P} — полная мощность тепловых потерь, S{\displaystyle S} — площадь сечения параллелепипеда, ΔT{\displaystyle \Delta T} — перепад температур граней, l{\displaystyle l} — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью[править | править код]

Связь коэффициента теплопроводности ϰ{\displaystyle \varkappa } с удельной электрической проводимостью σ{\displaystyle \sigma } в металлах устанавливает закон Видемана — Франца:

ϰσ=π23(ke)2T,{\displaystyle {\frac {\varkappa }{\sigma }}={\frac {\pi ^{2}}{3}}\left({\frac {k}{e}}\right)^{2}T,}
где k{\displaystyle k} — постоянная Больцмана,
e{\displaystyle e} — заряд электрона,
T{\displaystyle T} — абсолютная температура.

Коэффициент теплопроводности газов[править | править код]

В газах коэффициент теплопроводности может быть найден по приближённой формуле[2]

ϰ∼13ρcvλv¯,{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}\lambda {\bar {v}},}

где ρ{\displaystyle \rho } — плотность газа, cv{\displaystyle c_{v}} — удельная теплоёмкость при постоянном объёме, λ{\displaystyle \lambda } — средняя длина свободного пробега молекул газа, v¯{\displaystyle {\bar {v}}} — средняя тепловая скорость. Эта же формула может быть записана как[3]

ϰ=ik3π3/2d2RTμ,{\displaystyle \varkappa ={\frac {ik}{3\pi ^{3/2}d^{2}}}{\sqrt {\frac {RT}{\mu }}},}

где i{\displaystyle i} — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5{\displaystyle i=5}, для одноатомного i=3{\displaystyle i=3}), k{\displaystyle k} — постоянная Больцмана, μ{\displaystyle \mu } — молярная масса, T{\displaystyle T} — абсолютная температура, d{\displaystyle d} — эффективный (газокинетический) диаметр молекул, R{\displaystyle R} — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах[править | править код]

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ∼13ρcvlv¯∝P{\displaystyle \varkappa \sim {\frac {1}{3}}\rho c_{v}l{\bar {v}}\propto P}, где l{\displaystyle l} — размер сосуда, P{\displaystyle P} — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл[4], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[5]

τ∂q∂t=−(q+ϰ∇T).{\displaystyle \tau {\frac {\partial \mathbf {q} }{\partial t}}=-\left(\mathbf {q} +\varkappa \,\nabla T\right).}

Если время релаксации τ{\displaystyle \tau } пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ[править | править код]

\tau
МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора[en]200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества5—12 (на основе соединений углерода)
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Аргон (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Теплопроводность строительных материалов, что это, таблица

Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.  

Что такое теплопроводность и термическое сопротивление

Содержание статьи

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материалаКоэффициент теплопроводности Вт/(м·°C)
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум0
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Таблица теплопроводности строительных материалов

Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.

Сравнивают самые разные материалы

Сравнивают самые разные материалы

Название материала, плотностьКоэффициент теплопроводности
в сухом состояниипри нормальной влажностипри повышенной влажности
ЦПР (цементно-песчаный раствор)0,580,760,93
Известково-песчаный раствор0,470,70,81
Гипсовая штукатурка0,25
Пенобетон, газобетон на цементе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементе, 800 кг/м30,210,330,37
Пенобетон, газобетон на цементе, 1000 кг/м30,290,380,43
Пенобетон, газобетон на извести, 600 кг/м30,150,280,34
Пенобетон, газобетон на извести, 800 кг/м30,230,390,45
Пенобетон, газобетон на извести, 1000 кг/м30,310,480,55
Оконное стекло0,76
Арболит0,07-0,17
Бетон с природным щебнем, 2400 кг/м31,51
Легкий бетон с природной пемзой, 500-1200 кг/м30,15-0,44
Бетон на гранулированных шлаках, 1200-1800 кг/м30,35-0,58
Бетон на котельном шлаке, 1400 кг/м30,56
Бетон на каменном щебне, 2200-2500 кг/м30,9-1,5
Бетон на топливном шлаке, 1000-1800 кг/м30,3-0,7
Керамическийй блок поризованный0,2
Вермикулитобетон, 300-800 кг/м30,08-0,21
Керамзитобетон, 500 кг/м30,14
Керамзитобетон, 600 кг/м30,16
Керамзитобетон, 800 кг/м30,21
Керамзитобетон, 1000 кг/м30,27
Керамзитобетон, 1200 кг/м30,36
Керамзитобетон, 1400 кг/м30,47
Керамзитобетон, 1600 кг/м30,58
Керамзитобетон, 1800 кг/м30,66
ладка из керамического полнотелого кирпича на ЦПР0,560,70,81
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3)0,350,470,52
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3)0,410,520,58
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3)0,470,580,64
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3)0,70,760,87
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот0,640,70,81
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот0,520,640,76
Известняк 1400 кг/м30,490,560,58
Известняк 1+600 кг/м30,580,730,81
Известняк 1800 кг/м30,70,931,05
Известняк 2000 кг/м30,931,161,28
Песок строительный, 1600 кг/м30,35
Гранит3,49
Мрамор2,91
Керамзит, гравий, 250 кг/м30,10,110,12
Керамзит, гравий, 300 кг/м30,1080,120,13
Керамзит, гравий, 350 кг/м30,115-0,120,1250,14
Керамзит, гравий, 400 кг/м30,120,130,145
Керамзит, гравий, 450 кг/м30,130,140,155
Керамзит, гравий, 500 кг/м30,140,150,165
Керамзит, гравий, 600 кг/м30,140,170,19
Керамзит, гравий, 800 кг/м30,18
Гипсовые плиты, 1100 кг/м30,350,500,56
Гипсовые плиты, 1350 кг/м30,230,350,41
Глина, 1600-2900 кг/м30,7-0,9
Глина огнеупорная, 1800 кг/м31,4
Керамзит, 200-800 кг/м30,1-0,18
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м30,23-0,41
Керамзитобетон, 500-1800 кг/м30,16-0,66
Керамзитобетон на перлитовом песке, 800-1000 кг/м30,22-0,28
Кирпич клинкерный, 1800 — 2000 кг/м30,8-0,16
Кирпич облицовочный керамический, 1800 кг/м30,93
Бутовая кладка средней плотности, 2000 кг/м31,35
Листы гипсокартона, 800 кг/м30,150,190,21
Листы гипсокартона, 1050 кг/м30,150,340,36
Фанера клеенная0,120,150,18
ДВП, ДСП, 200 кг/м30,060,070,08
ДВП, ДСП, 400 кг/м30,080,110,13
ДВП, ДСП, 600 кг/м30,110,130,16
ДВП, ДСП, 800 кг/м30,130,190,23
ДВП, ДСП, 1000 кг/м30,150,230,29
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м30,33
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м30,38
Линолеум ПВХ на тканевой основе, 1400 кг/м30,20,290,29
Линолеум ПВХ на тканевой основе, 1600 кг/м30,290,350,35
Линолеум ПВХ на тканевой основе, 1800 кг/м30,35
Листы асбоцементные плоские, 1600-1800 кг/м30,23-0,35
Ковровое покрытие, 630 кг/м30,2
Поликарбонат (листы), 1200 кг/м30,16
Полистиролбетон, 200-500 кг/м30,075-0,085
Ракушечник, 1000-1800 кг/м30,27-0,63
Стеклопластик, 1800 кг/м30,23
Черепица бетонная, 2100 кг/м31,1
Черепица керамическая, 1900 кг/м30,85
Черепица ПВХ, 2000 кг/м30,85
Известковая штукатурка, 1600 кг/м30,7
Штукатурка цементно-песчаная, 1800 кг/м31,2

Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.

НаименованиеКоэффициент теплопроводности
В сухом состоянииПри нормальной влажностиПри повышенной влажности
Сосна, ель поперек волокон0,090,140,18
Сосна, ель вдоль волокон0,180,290,35
Дуб вдоль волокон0,230,350,41
Дуб поперек волокон0,100,180,23
Пробковое дерево0,035
Береза0,15
Кедр0,095
Каучук натуральный0,18
Клен0,19
Липа (15% влажности)0,15
Лиственница0,13
Опилки0,07-0,093
Пакля0,05
Паркет дубовый0,42
Паркет штучный0,23
Паркет щитовой0,17
Пихта0,1-0,26
Тополь0,17

Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.

НазваниеКоэффициент теплопроводности НазваниеКоэффициент теплопроводности
Бронза22-105Алюминий202-236
Медь282-390Латунь97-111
Серебро429Железо92
Олово67Сталь47
Золото318

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих конструкций для регионов России

Термическое сопротивление ограждающих
конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5  кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами. Рассчитывать придется все ограждающие конструкции

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *