Сопротивление теплопередаче окон пвх: Насколько окна ПВХ холоднее стены — теплопроводность – Расчет требуемого сопротивление теплопередаче окон для вашего региона

Содержание

Коэффициент сопротивления теплопередачи стеклопакетов — таблица и определение

Чтобы зимой и летом у вас в доме всегда был оптимальный климат, вам нужно установить на окнах качественные стеклопакеты. Это позволит сэкономить потребление электрической энергии на:

  • кондиционирование;
  • отопление.

Важно учитывать все критерии выбора подходящих для вас стеклопакетов. Почему при выборе стеклопакетов нужно знать их коэффициент теплопередачи?

Если рассматривать понятие теплопередачи, то она представляет собой передачу теплоты от одной среды к другой. При этом температура в той, которая отдает тепло выше, чем во второй. Весь процесс осуществляется сквозь конструкцию между ними.

Коэффициент теплопередачи стеклопакета выражается количеством тепла ( Вт), проходящем через м2 с разницей температур в двух средах 1 градус: Ro (м2. ̊С/Вт) – это значение действует на территории Российской Федерации. Оно служит для правильной оценки теплозащитных свойств строительных конструкций.

Расчет коэффициента теплопроводности

К или коэффициент теплопроводности выражается количеством тепла в Вт, проходящим через 1 м2 ограждающей конструкции с разницей температур в обеих средах 1 градус по шкале Кельвина. А измеряется он в Вт/м2.

Теплопроводность стеклопакета показывает, насколько эффективными изоляционными свойствами он обладает. Маленькое значение k означает небольшую теплопередачу и, соответственно, незначительную потерю тепла через конструкцию. В то же самое время теплоизоляционные свойства такого стеклопакета являются достаточно высокими.

Однако упрощенный пересчет k в величину Ro (k=1/Ro) не может считаться правильным. Это связано с разницей применяемых методик измерения в РФ и других государствах. Производитель представляет потребителям показатель теплопроводности только в том случае, если продукция прошла обязательную сертификацию.

Самая высокая теплопроводность у металлов, а самая низкая у воздуха. Из этого следует, что у изделия, имеющего много воздушных камер, низкая теплопроводность. Поэтому оно оптимально для пользователей, использующих строительные конструкции.

Таблица сопротивления теплопередаче стеклопакетов

п/пЗаполнение светового проемаR0, м^(2)·°С/Вт
Материал переплета
Дерево или ПВХАлюминий
1Двойное остекление в спаренных переплетах0.4
2Двойное остекление в раздельных переплетах0.44
3Тройное остекление в раздельно-спаренных переплетах0.560.46
4Однокамерный стеклопакет ( два стекла ) :
обычного (с расстоянием между стекол 6 мм)0.31
с И – покрытием (с расстоянием между стекол 6 мм)0.39
обычного (с расстоянием между стекол 16 мм)0.380.34
с И – покрытием (с расстоянием между стекол 16 мм)0.560.47
5 Двухкамерный стеклопакет ( три стекла ):
oбычного (с расстоянием между стекол 8 мм)0.510.43
oбычного (с расстоянием между стекол 12 мм)0.540.45
с И – покрытием одно из трёх стекол0.680.52

*Основные ( популярные ) типы стеклопакетов выделены красным цветом.

Технические характеристики стеклопакетов

Количество камер изделия влияет на теплосопротивление стеклопакета даже, если стекла имеют одинаковую толщину. Чем больше в конструкции предусмотрено камер, тем она будет более теплосберегающей.

Последние современные конструкции отличают более высокие теплотехнические характеристики стеклопакетов. Чтобы добиться максимального значения сопротивления теплопередаче, современные компании-производители оконной индустрии заполнили камеры изделий с помощью специального наполнения инертными газами и нанесли на поверхность стекла низкоэмиссионного покрытие.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

Перенос тепла в такой современной конструкции между стеклами происходит благодаря излучению. Эффективность сопротивления теплопередачи при этом увеличивается в 2 раза, если сравнивать данную конструкцию с обычной. Покрытие, обладающее теплоотражающими свойствами, способно намного снизить теплообмен лучей, происходящий между стеклами. Используемый для заполнения камер аргон позволяет уменьшить теплопроводность с конвекцией в прослойке между стеклами.

Дополнительно: Чем отличается энергосберегающий стеклопакет от обычного

В результате газовое наполнение вместе с низкоэмиссионным покрытием увеличивают сопротивление теплопередаче стеклопакетов на 80%, если сравнивать их с обычными стеклопакетами, которые не являются энергосберегающими.

Тенденции, наметившиеся в оконной индустрии

Стеклопакет, занимающий не менее 70% от оконной конструкции, был усовершенствован, чтобы максимально снизить теплопотери через него. Благодаря внедрению в производство новых разработок, на рынке появились селективные стекла, имеющие специальное покрытие:

  • К-стекло, характеризующееся твердым покрытием;
  • i-стекло, характеризующееся мягким покрытием.

На сегодняшний день все больше потребителей предпочитают стеклопакеты с i-стеклами, теплоизоляционные характеристики которых выше, чем у К-стекол в 1,5 раза. Если обратиться к данным статистики, то продажи стеклопакетов с нанесенными теплосберегающими покрытиями увеличилось до 70% от объема всех продаж в США, до 95% в Западной Европе, до 45% в России. А значения коэффициента сопротивления теплопередаче стеклопакетов варьируется от 0.60 до 1.15 м2 *0С\Вт.

Сопротивление теплопередаче окон. Самостоятельный расчет.

Окна должны быть теплыми – это, основной критерий при выборе новых окон.

Практически все рекламные компании посвященные окнам, описывают преимущества материалов, из которых выполнены рамы (дерево, пластик, алюминий), различные виды оконных профилей имеющих от трех до восьми камер обладающих отличными теплоизоляционными свойствами.

Но окно состоит не только из рамы, основная площадь окна приходится на остекленную поверхность, выполненную из различных видов стекол либо стеклопакетов, при этом обладающим совершено другим сопротивлением теплопередаче. Давайте рассмотрим, как самостоятельно определить общее сопротивление теплопередаче всего окна Rопр окна.

 

Напомним, что сопротивление теплопередаче, является основным параметром, определяющим теплоизоляционные свойство материала и показывает способность материала, площадью один квадратный метр, препятствовать потерям тепла. Чем выше

Rопр, тем материал имеет лучшую теплоизоляцию.

Окно является неоднородной конструкцией, в состав которого входят материалы с разным Rопр. Для определения общего сопротивления теплопередачи всего окна Rопр окна необходимо знать Rопр и площадь каждой однородной зоны.

В качестве примера возьмем одностворчатое окно шириной W=1400 мм., высотой H=1000 мм., выполненного с трехкамерного профиля VEKO EUROLINE, имеющего общую ширину рама-створка Wр=113 мм. и сопротивление теплопередаче R опр=0,64 м2С/Вт, с использованием однокамерного стеклопакета с воздушным заполнением, листовыми стеклами толщиной 4 мм., толщиной камеры 16 мм.,

4М1-16-4М1 имеющего сопротивление теплопередаче Rопр=0,32м2С/Вт.

Подробней с характеристиками стеклопакетов можно познакомиться в нашей статье Стеклопакеты.

 

Приведенное сопротивление теплопередаче неоднородной ограждающей конструкции можно вычислить по формуле.

 

Rопр = Σ Fi / Σ (Fi/Rоi)

Где Fi– площадь i-той однородной зоны, м2.

Rоi Сопротивление теплопередачи i-той однородной зоны, м2С/Вт.

 

Т. е. для расчета приведенного сопротивления теплопередаче всего окна Rопр окна мы должны знать сопротивление каждой однородной зоны и вычислить площади всех однородных зон.

 

 

В нашем случае мы имеем две однородные зоны:

 

1. Зона рама-створка

2. Зона стеклопакета.

 

1. Рассчитаем площадь рама-створка.

F1=1,4 x0,113+1,4×0,113+(1-0,113*2)*0,113+(1-0,113*2)*0,113=0,491324 м2

2. Рассчитаем площадь стеклопакета.

F2=(1,4-0,113*2)*(1-0,113*2)=0,908676 м2

имеем:

F1=0,491324 м2

Rо1=0,64 м2С/Вт

F2=0,908676 м2

Rо2=0,32 м2С/Вт

 

Используя значенияF1, F2, Ro1, Ro2 вычисляем Rопр окна

Rопр окна = (F1 + F2) / (F1 / Ro1 + F2 / Ro2)

Rопр окна=(0,491324 +0,908676)/(0,491324/0,64+0,908676/0,32)=0,3881?0,39 м2С/Вт

 

Таким образом, не смотря на то, что профиль VEKO EUROLINE имеет Rопр=0,64 м2С/Вт, общее сопротивление теплопередаче всего окна получилось значительно ниже

 
R опр окна=0,39 м2С/Вт

 

 

 

Для второго примера возьмем самый теплый профиль VEKASOFTLINE 82 имеющий Rопр=1,06 м2С/Вт, и общую ширину рама-створка Wр=124 мм но при этом применив тот, же стеклопакет 4М1-16-4М1 имеющего сопротивление теплопередаче Rопр=0,32м2С/Вт.

 

F1=1,4 x0,124+1,4×0,124+(1-0,124*2)*0,124+(1-0,124*2)*0,124=0,503487 м2

Rо1=1,06 м2С/Вт

F2=(1,4-0,124*2)*(1-0,124*2)=0,866304 м2

Rо2=0,32 м2С/Вт

 
R опр окна=(0,503487 +0,866304)/(0,503487 /1,06 +0,866304 /0,32)=0,436?0,44 м2С/Вт

 

Для третьего примера применим тот же, теплый профиль VEKASOFTLINE 82 имеющий Rопр=1,06 м2С/Вт, и общую ширину рама-створка Wр=124 мм применив двухкамерный стеклопакет с заполнением аргоном и одним энергосберегающим стеклом с мягким покрытием 4М1-Ar16-4М1-Ar16-И4 имеющего сопротивление теплопередаче Rопр=0,8м2С/Вт.

 

F1=1,4 x0,124+1,4×0,124+(1-0,124*2)*0,124+(1-0,124*2)*0,124=0,503487 м2

Rо1=1,06 м2С/Вт

F2=(1,4-0,124*2)*(1-0,124*2)=0,866304 м2

Rо2=0,8 м2С/Вт

 
R опр окна=(0,503487+ 0,866304)/(0,503487 /1,06 +0,866304 /0,8)=0,8825?0,88 м2С/Вт

 

 

На основании проведенных расчетов, можно сделать однозначный вывод —

 

Теплосберегающие свойства окон в большей степени зависят от тепловых свойств применяемого стеклопакета.

 

Методика расчета достаточно проста, при необходимости Вы можете самостоятельно определить площади однородных зон для ваших конкретных условий. Теплотехнические свойства материалов и оконных профилей рамы, а так же стеклопакетов, вы можете найти в соответствующих разделах нашего сайта либо на сайтах предприятий производителей.

 

Расчет общего сопротивления теплопередаче всего окна можно выполнить на специальных калькуляторах, перейдя по следующим ссылкам:

Калькулятор теплопроводности окон Veka.

Калькулятор теплопроводности окон Rehau.

Калькулятор теплопроводности окон KBE.

Калькулятор теплопроводности окон Kaleva.

Калькулятор теплопроводности окон Salamander.

Калькулятор теплопроводности деревянных окон Galux.

Калькулятор теплопроводности деревянных окон Flora.

Калькулятор теплопроводности деревянных окон Bocchio.

Сопротивление теплопередаче стеклопакета таблица, гост, формула

Насколько эффективно окна будут выполнять теплозащитную функцию, профессионалы устанавливают при помощи специальных расчетов. Качество теплоизолирующих свойств стеклопакета, в соответствии с ГОСТ 26602.1-99, 24866-99 определяет такой показатель, как сопротивление теплопередаче [R0].

Как проводится измерение показателя (сопротивления теплопередаче коэффициента R0)

Потери тепла иногда количественно определяются с точки зрения теплосопротивления стеклопакета или коэффициента сопротивления теплопередаче R0. Это значение, обратное коэффициенту теплопередачи U. R = 1/U (при переводе Европейских коэффициентов U в Российские R0 не следует забывать, что наружные температуры, используемые для расчетов, сильно отличаются).

В свою очередь, коэффициент теплопередачи U, характеризует способность конструкции передавать тепло. Физический смысл ясен из его размерности. U = 1 Вт/м2С – поток тепла в 1 Ватт, проходящий через кв. метр остекление при разнице температуры (снаружи и внутри) в 1 градус по Цельсию (В Европейских странах коэффициент теплопроводности остекления рассчитывается согласно EN 673). Чем меньше получаемое в результате число, тем лучше теплоизоляционная функция светопрозрачной конструкции.

Надежные компании-производители светопрозрачных конструкций ставят коэффициент сопротивления теплопередаче стеклопакета в зависимость не только от качества самой конструкции, но и от применения особых технологических операций в процессе изготовления продукции, например, нанесения специального магнетронного, солнцезащитного и энергосберегающего покрытия на поверхность стекла, специальных технологий герметизации, заполнения междустекольного пространства инертными газами и т.п.

В результате этот показатель характеризует не только конкретную функцию теплозащиты, но и качество всего производственного процесса, и качество готового продукта. Эту величину рекомендуется держать под контролем и измерять регулярно — и на различных этапах изготовления, и, с особой тщательностью, на готовых образцах продукции.

Как показатель влияет на выбор стеклопакета?

В каждом регионе, а также в крупных городах нашей страны действуют определенные строительные нормы, в которых указаны требуемые показатели R0тр для стеклопакета строительного назначения. В первую очередь, на них должны ориентироваться застройщики. Но практика показывает, что эти правила соблюдаются далеко не всегда. Поэтому для удобства выбора оконных конструкций STiS мы подготовили специальную таблицу с указанием сопротивления стеклопакетов теплопередаче. Ознакомившись с ней, вы можете убедиться, насколько высоко качество нашей продукции по этому показателю, а также определиться с подходящей конструкцией для остекления своего помещения.

Формула стеклопакета 1 Приведенное сопротивление теплопередаче, м2×°С/Вт
4М1-12-4М1 0,30
4М1-Аг12-4М1 0,32
4M1-16-И4 0,59
4M1-Ar16-И4 0,66
4M1-10-4M1-10-4M1 0,47
4M1-12-4M1-12-4M1 0,49
4M1-Ar10-4M1-Ar10-4M1 0,49
4M1-Ar12-4M1-Ar12-4M1 0,52
4M1-12-4M1-12-И4 0,68
4M1-16-4M1-16-И4 0,72
4M1-Ar6-4M1-Ar6-И4 0,64
4M1-Ar10-4M1-Ar10-И4 0,71
4M1-Ar12-4M1-Ar12-И4 0,75
4М1-Аr16-4М1-Аr16-И4 0,80
4SPGU-14S-4M1-14S-4M1 Теплопакет® 2.0 0,82
4SPGU-16S-4M1 Теплопакет® 2.0 0,57

Приведенное сопротивление теплопередаче для стеклопакетов указано с учетом всех технологических и производственных особенностей наших продуктов – использования мультифункциональных и низкоэмиссионных стекол, заполнения междустекольного пространства аргоном — газом с низкой теплопроводностью, применения в конструкциях фирменной теплой дистанционной рамки, специальных герметизирующих материалов, солнцезащитного, энергосберегающего покрытий и иных прогрессивных элементов и комплектующих.

  1. Расшифровку обозначений формул стеклопакета можно посмотреть здесь.

Таблица сопротивления теплопередаче стеклопакетов

Для сравнения характеристик стеклопакетов используют один из основных показателей

Коэффициент сопротивления теплопередаче Rо ( измеряемый в м2·°С/Вт ).
Чем выше коэффициент ближе к 1, тем лучше стеклопакет по характеристикам сохранения тепловой энергии.

Основные ( популярные ) типы стеклопакетов выделены красным цветом.
п/п Заполнение светового проема окна R0, м^(2)·°С/Вт
Материал переплета окна
Дерево или ПВХ Алюминий
1 Двойное остекление в спаренных переплетах 0.4
2 Двойное остекление в раздельных переплетах 0.44
3 Тройное остекление в раздельно-спаренных переплетах 0.56 0.46
4 Однокамерный стеклопакет ( два стекла ):
обычного (с расстоянием между стекол 6 мм) 0.29
с И — покрытием (с расстоянием между стекол 6 мм) 0.38
обычного (с расстоянием между стекол 16 мм) 0.32 0.31
с И — покрытием (с расстоянием между стекол 16 мм) 0.55 0.47
5 Двухкамерный стеклопакет ( три стекла ):
oбычного (с расстоянием между стекол 8 мм) 0.51 0.43
oбычного (с расстоянием между стекол 12 мм) 0.54 0.45
с И — покрытием одно из трёх стекол 0.68 0.52

По результатам таблицы видно значительное повышение характеристики стеклопакета с применением И-стекла. В однокамерном 14 мм. стеклопакете 4-6-И4 прирост до 30% по сравнению с обычным 4-6-4.

Низкоэмиссионное стекло (И-стекло) обладает способностью отражать тепловое излучение. В отопительный период оно «возвращает» в квартиру до 90% тепловых волн, выделенных нагревательными приборами. А летом отражает наружу часть солнечного излучения инфракраснго (ИК) и ультрафиолетового (УФ). В результате зимой в комнате становится теплее, а летом – прохладнее.

И-стекло – низкоэмиссионное стекло с многослойным покрытием (в том числе из серебра), нанесенным путем плазменного напыления. Это «мягкое» покрытие. Слой с таким напылением обращен только внутрь стеклопакета.

широкий профиль Decco сравнение стеклопакетов

Зависимость характеристики стеклопакета от расстояния между стеклами в нем

Расстояние между стеклами (мм) 6 12 16 20 30 35 40 50 100
Показатель R0 0.3 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.35

В таблице приведены значения сопротивления теплопроводности для однокамерного стеклопакета, заполненного воздухом. Как видно из таблицы, увеличение расстояния между стеклами свыше 16 мм. нецелесообразно.

Внимание!

Если из окна тянет холодом это не всегда плохое окно, а возможно холодный стеклопакет. В этом случае нам достаточно заменить ваш стеклопакет на энергосберегающий и тепло сразу наполнит ваш дом!

Мы готовы избавить вас от вечно надоевшей прохлады.

С Мир Окон надежно, потому что мы делаем больше, чем от нас требуют!

Изменение нормативов по коэффициентам сопротивления теплопередаче в регионах

Валерий Козионов, технический эксперт Декёнинк РУС, комментирует изменение нормативов в обновленной редакции основополагающего документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий» и новые требования к энергоэффективности светопрозрачных конструкций.

Для чего нужны более теплые стены и более теплые окна, зачем повышать нормативный коэффициент сопротивления теплопередаче конструкции? На первый взгляд – всё очевидно. Тем не менее, давайте разберемся.

Для начала, немного основ строительной физики. Если наружная стена (или ограждающая конструкция в виде окна) в течении продолжительного времени подвержена действию постоянных температур, но со стороны помещения и со стороны улицы температуры различные (стационарное состояние), то благодаря разности температур (градиенту температур) через строительную конструкцию образуется тепловой поток от высшего энергетического уровня к низшему. Тепловая энергия течет от тепла к холоду.

В зависимости от теплотехнических характеристик системы наружной стены, выраженной через коэффициент теплопроводности материала стены l (лямбда), Вт/(м °С) в поперечном сечении стены устанавливается характерное распределение температур.

В более сложных ситуациях (многомерные тепловые потоки) по сравнению с невозмущенной зоной стены (одномерные тепловые потоки) как, например, область присоединения окна к наружной стене, изображение распределения температур может быть представлено только частично. Поэтому предлагается изображение изотерм. Изотерма – это линия, образованная точками с одинаковой температурой. Изотермы рассчитываются и изображаются с помощью программ по методу конечного элемента. На основании расчета изотерм могут быть определены тепловые потоки и распределение температур в поперечном сечении строительной конструкции.

ример распределения температур и прохождения изотерм в однослойной (монолитной) и многослойной наружной стенеРис.1  Пример распределения температур и прохождения изотерм в однослойной (монолитной) и многослойной наружной стенеПовышая нормативный коэффициент сопротивления теплопередаче R02°С/Вт), законодатели предписывают архитекторам, проектировщикам и строителям применять материалы и конструкции с более низкой теплопроводностью, которые с одной стороны сохраняют все более ценную энергию для подогрева помещения зимой или для охлаждения их летом, а с другой – повышают температуру на поверхности ограждающих конструкций со стороны помещения, предотвращая риск образования конденсата и грибка и связанные с ними проблемы.

Немного о конденсате и грибке. Воздух обладает свойством в зависимости от своей температуры максимально насыщаться определенным количеством воды в форме водяного пара (объем насыщения). При этом тёплый воздух может насытиться большим количеством воды, чем холодный.

Относительная влажность воздуха обозначает содержание влаги в воздухе по отношению к объему насыщения (= максимально возможное количество). Например, содержание влаги в количестве 8,65 г/м3 при 20°С соответствует относительной влажности 50%. Для воздуха помещения с температурой 20°С и относительной влажностью 50% это означает, что в воздухе содержится 50% максимально возможного количества воды (17,3 г/м3) в форме водяного пара.

Конденсат образуется в том случае, если воздух из-за охлаждения более не в состоянии сохранять первоначальное количество воды. Температура, при которой начинается этот процесс, называется температурой точки росы или точкой росы.

Рис. 2 Таблица температуры точки росы в зависимости от температуры и относительной влажности (выдержка из DIN4108-3, таблица А.4)Рис. 2 Таблица температуры точки росы в зависимости от температуры и относительной влажности (выдержка из DIN4108-3, таблица А.4)При температуре воздуха 20 °С и относительной влажности 50 % температура точки росы составляет 9,3 °С или округлённо 10 °С (→ 10 °С – изотерма для оценки опасности образования конденсата на поверхности конструкции).

Во избежание конденсата, 10°С — изотерма должна находиться внутри конструкции.

Образование грибка является не только следствием образования конденсата. Исследования показывают, что при условиях благоприятных для роста грибка вследствие капиллярной конденсации грибок может образовываться уже ранее. Благоприятные условия – это относительная влажность воздуха ок. 80% установившаяся в течении длительного времени в приповерхностной зоне с подходящей питательной средой (например, домашняя пыль) для грибка.

Взаимосвязь температуры точки росы и критической температуры для грибкаРис. 3 Взаимосвязь температуры точки росы и критической температуры для грибкаКак видим из вышесказанного, необходимость повышать теплозащитные свойства ограждающих конструкций — это жизненная необходимость, особенно для стран с таким климатом, как в России.

14.12.2018 Минстрой РФ подписал приказ о введении обновленной редакции основополагающего нормативного документа в области энергосбережения зданий СП 50.13330 «Тепловая защита зданий». Редакция была разработана Научно-исследовательским институтом строительной физики РААСН совместно с рядом представителей строительной индустрии, научно-исследовательскими институтами и содержит новые требования к энергоэффективности светопрозрачных конструкций, основанные на длительном цикле натурных испытаний.

Требования к сопротивлению теплопередаче светопрозрачных ограждающих конструкций в России устарели по отношению к качеству продукции, представленной на современном рынке остеклений. Окна, выбранные по старым нормам, не могут обеспечить нужный уровень температур внутренней поверхности, не позволяют эффективно сохранять тепло, применять широкие стеклопакеты для повышения шумоизоляции, создать надежный монтажный шов с перекрытием зон холодных изотерм и тепловых мостов.

Рис. 4 Развитие окон на примере деревянных и деревокомпозитных конструкций Рис. 4 Развитие окон на примере деревянных и деревокомпозитных конструкцийНовая редакция учитывает современные материалы, методы остекления и дает возможность экономии энергии за счет новых технологий. Были определены новые требования к сопротивлению теплопередаче светопрозрачных конструкций для всех климатических зон России.

Рис.5 : Рис.5 Изменения по определению базовых R0 тр. (м2°С/Вт) для жилых зданий ГСОП рассчитываются по прежней формуле (5.2) СП 50.13330.2012. Базовые значения требуемого сопротивления теплопередаче при ГСОП в интервалах от 2000 до 12000 (°С×сут/год)  следует определять методом линейной интерполяции.

Так, согласно изменённому СП 50.13330 требуемое приведенное сопротивление теплопередаче светопрозрачной конструкции R0 тр.2°С/Вт), например, для Краснодара (ГСОП = 2538 сут.) составит 0,53 (ранее 0,34).

Приказ об утверждении изменений подписан Министром строительства и жилищно-коммунального хозяйства Российской Федерации Владимиром Якушевым 14 декабря 2018 г., а обновлённый СП 50.13330.2012 «СНиП 23-02-2003 Тепловая защита зданий» вступит в силу уже через 6 месяцев со дня публикации на сайте Росстандарта.

Новые требования идут в ногу с трендом энергосбережения, позволяют строить более комфортные жилые и административные здания и вступят в силу уже в середине 2019 года, заменив устаревшие нормы 20 летней давности.

Российские производители оконных профилей и стеклопакетов готовы поставлять комплектующие для окон и дверей по новым нормам.

Новые строительные правила предписывают строителям приобретать более дорогие окна и двери и при этом не увеличить стоимость жилья.

Фолькер Гут, генеральный директор Deceuninck в России

— Современные технологии позволяют изготовить доступные по цене окна из многокамерных ПВХ профилей, с 3-мя контурами уплотнителей, увеличенным до 25 мм заглублением стеклопакета и с двухкамерными стеклопакетами с многофункциональными стеклами. Приведенный коэффициент сопротивления такого окна в районе единицы. Одно из таких решений – инновационный профиль Deceuninck «Фаворит Спэйс», который неоднократно отмечался профессиональным сообществом и экспертами как энергоэффективный. Увеличенная ширина профиля 76 мм, 6 воздушных камер и дополнительный 3-й контур уплотнителя в окне «Фаворит Спэйс» надежно сохраняют тепло и спасают от сквозняков. В дополнение ко всему окна «Фаворит Спэйс» экологичны и надежны: их профиль производится без использования свинца и рассчитан на 60 лет эксплуатации.

Рис. 6 Сечение современного окна системы «Фаворит Спэйс» от Декёнинк, производство г. Протвино, Россия. Рис. 6 Сечение современного окна системы «Фаворит Спэйс» от Декёнинк, производство г. Протвино, РоссияПортал ОКНА МЕДИА рекомендует: Руководство строительной компании ЮИТ посетили завод партнера Deceuninck в Екатеринбурге

Классификация окон

Классификация окон

Окна классифицируют по основным эксплуатационным характеристикам:

1.      Приведенному сопротивлению теплопередаче;

2.      Воздухо – и Водопроницаемости;

3.      Звукоизоляции;

4.      Коэффициенту пропускания света;

5.      Сопротивлению ветровой нагрузке;

6.      Стойкости к климатическим воздействиям.

 

1.      Приведенное сопротивление теплопередаче

По показателю приведенного сопротивления теплопередаче окна подразделяют на следующие классы:

Класс

              Сопротивление теплопередаче ( м2○С/Вт)

А1

0,80 и более

А2

0,75 – 0,79

Б1

0,70 – 0,74

Б2

0,65 – 0,69

В1

0,60 – 0,64

В2

0,55 – 0,59

Г1

0,50 – 0,54

Г2

0,45 – 0,49

Д1

0,40 – 0,44

Д2

0,35 – 0,39

Таблица спецификаций Класс Сопротивление теплопередаче ( м2○С/Вт)

Изделиям с сопротивлением теплопередаче ниже 0,35 – класс не присваивают.

 

2.      Воздухо – и Водопроницаемости

По показателям воздухо — и водопроницаемости окна подразделяют на следующие классы:

Класс

Объемная воздухопроницаемость при DP=100 Па, м3(ч?м2) для построения нормативных границ классов

Предел водонепроницаемости, Па, не менее

А

3

600

Б

9

500

В

17

400

Г

27

300

Д

50

150

Таблица спецификаций Класс Объемная воздухопроницаемость при DP=100Па, м3(ч?м2) для построения нормативных границ классов

3.      Звукоизоляция

По показателю звукоизоляции окна подразделяют на классы со снижением воздушного шума потока городского транспорта:

Класс

Окна со снижением воздушного шума свыше

А

36 дБА

Б

34 – 36 дБА

В

31 – 33 дБА

Г

28 – 30 дБА

Д

25 – 27 дБА

Таблица спецификаций Класс Окна со снижением воздушного шума свыше

 

4.      Общий коэффициент пропускания света

По показателю общего коэффициента пропускания света окна подразделяют на классы:

Класс

Общий коэффициент пропускания света

А

0,50 и более

Б

0,45 – 0,49

В

0,40 – 0,44

Г

0,35 – 0,39

Д

0,30 – 0,34

Таблица спецификаций Класс Общий коэффициент пропускания света

 

5.      Сопротивление ветровой нагрузки

По сопротивление ветровой нагрузки окна подразделяют на классы:

Класс

Давление (Па)

А

1000 и более

Б

800 – 999

В

600 – 799

Г

400 – 599

Д

200 — 399

Таблица спецификаций Класс Сопротивление ветровой нагрузки (Па)

 

Указанные перепады давления применяют при оценке эксплуатационных характеристик изделий. Прогибы деталей изделий определяют при перепадах давления, вдвое превышающих верхние пределы для классов, указанных в классификации.

Ветровая нагрузка W(Па)

Скорость ветра (км/час)

Скорость ветра (м/сек.)

400

91

25,3

550

107

29,7

600

112

31

750

125

34,6

800

129

35,8

1000

144

40

1200

158

43,8

1500

176

49

1600

182

50,6

1800

193

53,6

2000

203

56,6

2400

223

62

2500

228

63,2

3000

249

69,3

3500

269

74,8

Таблица спецификаций Ветровая нагрузка W(Па) Скорость ветра (км/час) Скорость ветра (м/сек.)

 

6.      Стойкость к климатическим воздействиям

В Зависимости от стойкости к климатическим воздействиям изделия подразделяются по видам исполнения:

Класс

Условие

нормального исполнения

для районов со средней месячной температурой воздуха в январе минус 20С и выше (контрольная нагрузка при испытаниях изделий или комплектующих материалов и деталей – не выше минус 45С) в соответствии с действующими строительными нормами

морозостойкого исполнения

для районов со средней месячной температурой воздуха в январе минус 20С и выше (контрольная нагрузка при испытаниях изделий или комплектующих материалов и деталей – не выше минус 55С) в соответствии с действующими строительными нормами

Таблица спецификаций класс условие для районов со средней месячной температурой воздуха в январе минус 20С и выше

 

Структура условного обозначения изделий

Буквенное обозначение вида изделия:
О – оконный блок.
Б – балконный блок.

Буквенное обозначение материала изделия:
Д – древесина.
П – поливинилхлорид.
А – алюминиевый сплав.
Ст – сталь.
ДА – деревоалюминиевые. 

Теплопередача стеклопакетов: что это такое и какими коэффициентами с нею бороться

Схема действия стеклопакета

Главный показатель стеклопакета – его способность удерживать тепло в помещении. В отзывах пользователей пластиковых и пр. окон часто можно встретить чисто субъективные характеристики: «Поставили окна ПВХ, сразу стало теплее»; «С пластиковыми стеклопакетами даже зимой жарко» и т.п.

А есть ли какие-либо объективные критерии, характеризующие способность стеклопакета противостоять оттоку тепла из помещения? О них мы и расскажем далее в статье на нашем сайте.

к содержанию ↑

Сопротивление теплопередаче стеклопакетов

  Двойной стеклопакет

Двухкамерный стеклопакет

Для определения теплопередачи той или иной преграды используют формулу:

U = W/(S*T), где

U – теплопередача;

W – мощность проходящего через преграду потока энергии, Вт;

S – площадь преграды, м²;

Изображение, демонстрирующее утечку тепла через окна по сравнению с утечкой через стены здания

Изображение, демонстрирующее утечку тепла через окна по сравнению с утечкой через стены

T- разница температур за и перед преградой, при которой происходит отток тепла.

Физический смысл этой формулы прост. Она показывает мощность энергетического потока, покидающего помещение через преграду площадью 1 кв. м при разнице температур за и перед преградой в 1° С. Чем меньше величина U, тем лучше термоизоляционные свойства преграды.

Но эта формула не слишком удобна для пользователей. В особенности, для россиян, привыкших к тому, что «чем больше, тем лучше». Поэтому в оборот была введена величина, названная «сопротивление теплопередаче». Ее обозначают буквой R.

R = 1/U

На примере одного дома – разница между окнами с хорошей и плохой теплоизоляцией

На примере одного дома – разница между окнами с хорошей и плохой теплоизоляцией

Чем эта величина больше, тем, следовательно, лучше преграда, в частности, стеклопакет, сопротивляется оттоку тепла от помещения.

Часто для обозначения R используется термин коэффициент сопротивления теплопередаче стеклопакета. Это не совсем верно. Обычно, коэффициент – это безразмерная величина, показывающая соотношение двух параметров. Но к данному термину все привыкли и используют его в обиходе даже чаще, чем правильную формулировку: «сопротивление теплопередаче».

к содержанию ↑

А сколько это будет в цифрах?

Однокамерный стеклопакет в окне

Окно с однокамерным стеклопакетом

В РФ сопротивление теплопередаче стеклопакета ГОСТ 24866-99 нормирует в следующих пределах (имеются ввиду стеклопакеты общестроительного назначения):

Нетрудно подсчитать, что максимально допустимый коэффициент теплопередачи стеклопакета однокамерного

U1 = 1/0,32 =3,125 Вт/м²*°С;

Двухкамерный стеклопакет в окне

Двухкамерный стеклопакет

Максимально допустимая теплопередача двухкамерного стеклопакета

U2 = 1/0,44 = 2, 273 Вт/м²*°С.

Понятно, что производителя интересует не сопротивление теплопередаче стеклопакета самого по себе, а то, как будет сопротивляться оттоку тепла всё окно в совокупности – стеклопакет, рама. Поэтому была введена еще одна величина: приведенное сопротивление теплопередаче стеклопакета. Рассчитывают ее по следующей формуле:

Ro = [(1-B)/Rp + B/Rsp]-1,

Сравнительная утечка тепла через стеклопакет и через раму

Утечка тепла через стеклопакет и через раму

где Ro – приведенное сопротивление теплопередаче стеклопакета;

B – отношение площади остекления к площади всего оконного проёма;

Rp – сопротивление теплопередаче профиля;

Rsp – сопротивление теплопередаче стеклопакета.

к содержанию ↑

Поиграем в классы! Стеклопакетов…

Для того, чтобы потребителю было легче ориентироваться на рынке окон, был введен еще один параметр – класс сопротивления теплопередаче стеклопакета. Он определяется в зависимости от приведенного сопротивления теплопередаче. Всего имеется 10 классов:

Приведенное сопротивление теплопередаче, м2*оС/Вт 0,8 и более 0,75-0,79 0,70-0,74 0,65-0,69 0,60-0,64 0,55-0,59 0,50-0,54 0,45-0,49 0,40-0,44 0,35-0,39
Класс А1 А2 Б1 Б2 В1 В2 Г1 Г2 Д1 Д2
Чем холоднее, тем меньше тепла стеклопакет должен пропускать

Чем ниже средние годовые температуры, тем выше коэффициент сопротивления теплопередаче должен быть

Увы, для неспециалиста приведенная выше таблица малоинформативна. Вряд ли по ней рядовой потребитель разберется, какой стеклопакет ему для климатических условий его проживания следует покупать. Поэтому надзорные организации и производители начали придумывать дополнительные таблицы сопротивления теплопередаче стеклопакета в зависимости от тех или иных климатических условий местности.

Например, СНиП II-3-79 (http://www.know-house.ru/info.php?r=win&uid=21) предлагает таблицу, коэффициент сопротивления теплопередачи стеклопакетов в которой поставлен в зависимость от градусо-суток отопительного сезона.

Проще говоря, от того, сколько дней продолжается отопительный сезон и какова при этом средняя разница температур на улице и в отапливаемом помещении, надо и выбирать стеклопакет. Например, при показателе «градусо-суток» в 2000 можно применять стеклопакеты с Ro = 0,3 м²*°С/Вт. А при показателе в 12000 (200 дней при разнице температур в 60° С) – 0,8 м²*°С/Вт.

Так что меряйте температуру в доме и «за бортом», и считайте сутки отопительного сезона! Воздастся стеклопакетами с самым подходящим сопротивлением теплопередаче!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *