Сопротивление теплопередаче это: Теплопроводность строительных материалов — основные понятия, табличные значения, расчеты – Сопротивление теплопередаче. Сопротивление теплопередаче ограждающей конструкции

Содержание

Сопротивление теплопередаче. Сопротивление теплопередаче ограждающей конструкции

Теплопередача ограждающих конструкций — это сложный процесс, включающий конвекцию, теплопроводность и излучение. Все они происходят совместно при преобладании одного из них. Теплоизоляционные свойства конструкций ограждения, которые отражаются через сопротивление теплопередаче, должны соответствовать действующим строительным нормам.

Как происходит теплообмен воздуха с ограждающими конструкциями

В строительстве задают нормативные требования к величине потока тепла через стенку и через него определяют ее толщину. Одним из параметров для его расчета служит температурный перепад снаружи и внутри помещения. За основу берут самое холодное время года. Другим параметром является коэффициент теплопередачи К — количество тепла, переданного за 1 с через площадь 1 м2, при разности температуры наружной и внутренней среды в 1 ºС. Величина К зависит от свойств материала. По мере его снижения возрастают теплозащитные свойства стены. Кроме того, холод в помещение будет проникать меньше, если будет больше толщина ограждения.

Конвекция и излучение снаружи и изнутри также влияют на утечку тепла из дома. Поэтому за батареями на стенах устанавливают отражающие экраны из алюминиевой фольги. Подобную защиту делают также внутри вентилируемых фасадов снаружи.

Теплопередача через стены дома

Наружные стены составляют максимальную часть площади дома и через них энергетические потери достигают 35-45%. Строительные материалы, из которых изготовлены ограждающие конструкции, имеют разную защиту от холода. Наименьшей теплопроводностью обладает воздух. Поэтому пористые материалы имеют самые низкие значения коэффициентов теплопередачи. Например, у строительного кирпича К = 0,81 Вт/(м2·оС), у бетона К = 2,04 Вт/(м2·оС), у фанеры К = 0,18 Вт/(м2·оС), а у пенополистирольных плит К = 0,038 Вт/(м2·оС).

В расчетах применяют величину, обратную коэффициенту К, — сопротивление теплопередаче ограждающей конструкции. Оно является нормируемой величиной и не должно быть ниже определенного заданного значения, поскольку от него зависят затраты на отопление и условия пребывания в помещениях.

На коэффициент К влияет влажность материала ограждающих конструкций. У сырого материала вода вытесняет воздух из пор, а ее теплопроводность выше в 20 раз. В результате ухудшаются теплозащитные свойства ограждения. Влажная кирпичная стена пропускает на 30% больше тепла по сравнению с сухой. Поэтому фасад и крыши домов стараются облицовывать материалами, на которых вода не удерживается.

Потери тепла через стены и стыки проемов в значительной степени зависят от ветра. Несущие конструкции — воздухопроницаемые, и воздух через них проходит снаружи (инфильтрация) и изнутри (эксфильтрация).

Облицовка зданий

Наружная облицовка вентилируемых фасадов устанавливается с зазором, в котором циркулирует воздух. Она не влияет на сопротивление теплопередаче стен, но хорошо противостоит ветровой нагрузке, уменьшая инфильтрацию. Воздух может проникать в места соединения оконных и дверных коробок со стенными проемами. Из-за этого уменьшается сопротивление теплопередаче окон на крайних участках. В этих местах помещают эффективную изоляцию, препятствующую оттоку тепла по наиболее короткому пути. Сопротивление теплопередаче стен и окон в местах сопряжения будет минимальным, и конденсат на стеклопакете не образуется, если расположить рамы посередине откоса.

Необходимые защитные свойства и энергосбережение достигается применением теплоизоляционных многослойных панелей, которыми защищают весь фасад дома снаружи и изнутри. Системы навесного вентилируемого фасада устанавливаются в любое время года и при любой погоде. За счет дополнительного утепления устраняются «мостики холода» и повышается комфорт проживания.

сопротивление теплопередаче стен

Потери тепла через перекрытия первого этажа

Через пол этажа потери тепла достигают 3-10%. Строители мало заботятся об их утеплении, оставляя щели. В лучшем случае производится их косметическая заделка цементным раствором. Если температура поверхности пола ниже, чем в помещении, на 2 ºС, значит, теплоизоляция цоколя выполнена некачественно.

Теплопотери через крышу

Особенно велики потери тепла через крышу в одно- и двухэтажных домах. Они достигают 35%. Современные теплоизолирующие материалы позволяют надежно защитить потолок и крышу от действия внешней среды и потерь тепла изнутри.

Как определяется сопротивление теплопередаче

В физическом смысле сопротивление теплопередаче ограждающей конструкции характеризует уровень ее теплоизоляционных свойств и находится из соотношения

  • R = 1/К 2·оС/Вт ).

Защитные свойства стены определяются процессами температурного обмена на ее наружной и внутренней поверхностях, а также в толще материала. Для сложного ограждения суммарное сопротивление теплопередаче будет иметь вид:

  • R0 = (R1 + R2 + … + Rn) + Rв + Rн,

где R1, R2, Rn характеризуют свойства отдельных слоев, а Rв, Rн— внутреннее и внешнее взаимодействие с воздухом.

сопротивление теплопередаче ограждающей конструкции

Приведенное сопротивление теплопередаче

На практике конструкции являются неоднородными и содержат элементы крепления слоев и прочие связи, образующие «мостики холода». Неоднородность конструкций может значительно снижать сопротивление теплопередаче всей конструкции. Поэтому его приводят к некоторому усредненному значению R

0 для эквивалентного ограждения с равномерными свойствами по всей площади. Например, в расчетах толщины стен здания учитываются теплопотери в оконных и дверных откосах, воротах, отдельных элементах здания через величину приведенного сопротивления теплопередаче. На картинке стрелками показано, как теплопроводное бетонное перекрытие вытягивает тепло наружу.

приведенное сопротивление теплопередаче

Приведенное сопротивление теплопередаче определяется после определения всех основных площадок действия разных тепловых потоков. После этого, в соответствии с ГОСТ 26254-84, производится расчет по формуле:

  • R0
    = F / (F1 / R01+ F2 / R02+…+ Fn / R0n), где:

F — площадь ограждающей конструкции;

Fn— площадь характерной n-й зоны;

R0n —сопротивление теплопередаче характерной n-й зоны.

Таким образом, фактические тепловые потоки через сложную конструкцию приводятся к равномерной теплопередаче через ее проекцию.

Согласно ГОСТ Р 54851-2011, удельный тепловой поток через ограждающие конструкци­и определяется из выражения:

  • q = (tвн – tн) / R0 ,

где tвн и tн – температура воздуха в помещении, выбираемая по ГОСТ 30494, и температура снаружи, определяемая как средняя по самой холодной пятидневке за год.

Инфракрасная технология позволяет определять места, где сопротивление теплопередаче снижается. На картинке видно «мостики холода», где происходит большая потеря тепла. Температура в зоне синего цвета на 8 ºС меньше остальной.

сопротивление теплопередаче

Потери тепла через оконные проемы

Окна занимают небольшую часть поверхности дома, но даже у двойных стеклопакетов теплозащита в 2-3 раза слабее, чем у стен. Современные энергосберегающие окна по характеристике температурной защиты приближаются к свойствам стен.

Для каждого стеклопакета существуют свои эксплуатационные характеристики. На первом месте среди них стоит приведенное сопротивление теплопередачи, в зависимости от величины которого каждое изделие разделяют по классам.

класс сопротивления теплопередаче

Самый низкий класс — Д2 — представляют однослойные стеклопакеты с толщиной стекла 4 мм (R

0= 0,35 — 0,39 м·°С/Вт). Если окно имеет сопротивление теплопередаче стеклопакетов ниже приведенных минимальных значений, то его никак не классифицируют. По мере увеличения температурной защиты энергоэффективные окна снижают светопропускание.

Самый высокий класс сопротивления теплопередаче — А1 — представляют двухкамерные энергосберегающие окна с инертным газом и защитными покрытиями (R0> = 0,8 м·°С/Вт). Их теплозащитные свойства выше, чем у некоторых стен из строительных материалов.

Сопротивление теплопередаче стеклопакетов зависит от следующих факторов:

  • соотношения площадей остекления и всего блока;
  • размеров сечений створки и рамы;
  • материала и конструкции оконного блока;
  • характеристики стеклопакета;
  • качества уплотнений между створкой и рамой.

Когда рассчитывается сопротивление теплопередаче окон и балконных дверей, необходимо учитывать влияние краевой зоны, поскольку в месте соединения стеклопакета с профилем окна может выпадать конденсат.

сопротивление теплопередаче стеклопакетовПри монтаже также следует обращать внимание на качество уплотнения проемов. Через термографическое устройство можно увидеть, как холод проникает в дом через верхнюю и правую части двери (картинка снизу).сопротивление теплопередаче оконКакими бы эффективными ни были стеклопакеты, при свободном прохождении воздуха между рамами и стенами все их преимущества будут потеряны.

Выбор окон вместе с балконными дверями для каждого региона производится в соответствии с требуемой величиной сопротивления теплопередаче R

0 и климатическими условиями, определяемыми количеством градусо-суток периода отопления.

Заключение

Нормированные сопротивления теплопередаче стен и окон позволяют возводить энергоэффективные здания и сооружения. При расчетах температурных характеристик стен необходимо учитывать неоднородные свойства конструктивных элементов. Для поддержания микроклимата нужна надежная защита всех частей дома от холода. Это позволяют сделать современные утеплители.

Коэффициент сопротивления теплопередаче: как рассчитать?

Сопротивление теплопроводности утеплителяКоэффициент сопротивления теплопередаче — это специальный расчёт оптимального показателя теплопередачи стеклопакетов. Поскольку площадь стеклопакета составляет значительную часть пластикового окна, оконная конструкция должна обладать максимальными тепло- и звукоизоляционными свойствами. Для этого просчитывается коэффициент сопротивления теплопередаче.

Коэффициент сопротивления теплопередаче

Коэффициент сопротивления теплопередаче — это степень сопротивления изделия переноса тёплого воздуха. Благодаря этому расчёту можно узнать, какое количество тепла уйдёт из помещения с учётом разницы температуры в один градус.

Коэффициент сопротивления теплопередаче — это важный расчёт при установке окна. Чтобы обеспечить в любое время года оптимальные климатические условия, нужно поставить на окна качественные стеклопакеты. Таким образом, у вас получится сэкономить на потреблении электроэнергии, кондиционирование и отопление.

Понятие теплопередачи — это отдача тепла с одной стороны на другую. Таким образом, температурный показатель у одной стороны выше, чем у другой. Сам процесс проходит между конструкцией. Поэтому при выборе подходящих стеклопакетов учитывается коэффициент сопротивления теплопередач.

Коэффициент тепловой передачи определяется количеством тепла — Вт. Он проходит через стороны помещения — м2. При этом определяется между ними разница на один градус — Ro. В Российской федерации действует только такое обозначение, которое помогает правильно оценить теплозащитные свойства строительных конструкций.

Коэффициент сопротивления — это величина, которая оценивает качество теплозащитных функций окна. Таким образом, чем меньше проходит потерь тепла, тем выше будет показатель сопротивления теплопередаче.

Коэффициент сопротивления: показатели

Формула стеклопакета обозначает определённый набор символов, который являет собой основные характеристики состава стеклопакета. Таким образом, формула определяет значение толщины и ширины промежутков между стёклами.

  1. Звукоизоляция, обозначающаяся как Дб, является основным параметром стеклопакета. Она необходима для снижения уровня постороннего шума, доносящегося с улицы.
  2. Толщина стеклопакета, обозначается как мм — показатель толщины стёкол и воздушных камер между ними.

Теплоизоляция — это коэффициент сопротивления теплопередаче

Чтобы повысить теплоизоляцию стеклопакета, можно рассматривать несколько способов:

  1. увеличение толщины стеклопакета, что изменит расстояние между сторонами;
  2. увеличение количества камер при установке двухкамерных стеклопакетов.

Стоит отметить, что однокамерные стеклопакеты на рынке представлены в двух вариантах показателя толщины стёкол — 24 и 32 мм. Но несмотря на разницу более чем в 10 мм они имеют одинаковые теплоизоляционные характеристики. Происходит это из-за конвекции между стёклами, поэтому расстояние между сторонами не может изменить коэффициент сопротивления.

Коэффициент сопротивления теплопередаче: советы по выбору стеклопакета

Основным параметром выбора стеклопакета является коэффициент тепловой передачи. Не рекомендуется в жилых помещениях ставить стеклопакет с сопротивлением менее 0,45. Этот показатель является строительной нормой, и при соблюдении всех правил стеклопакеты не могут быть изготовлены менее этого значения.

  1. Как расчитать теплопроводность материалаЧтобы установить окна в квартире либо в загородном доме, рекомендуется ставить двухкамерный пакет. Однокамерное окно обладает низким показателем теплоизоляции, поэтому зачастую не отвечает требуемым строительным нормам.
  2. Важно отметить, что подбирая для себя наилучший вариант стеклопакета, нужно учитывать толщину и материал оконного профиля. Характеристики профильной системы имеют огромное значение для расчёта коэффициента сопротивления теплопередачи.
  3. Установка стеклопакета также имеет огромное значение. Двухкамерный пакет не может быть уставлен с толщиной менее 40 мм. Обратите внимание на энергосберегающие модели, они имеют особой покрытие, которое способно увеличивать коэффициент теплопередачи при помощи отражения света обратно.

Коэффициент теплопроводности материаловДля производства стеклопакетов с энергосберегающей системой применяется два вида стёкол — твёрдое и мягкое низкоэмиссионое покрытие. Мягкое стекло не настолько качественное и прочное, как твёрдое. Поэтому оно получило большую востребованность у потребителя.

Для увеличения коэффициента передачи тепла сопротивления стеклопакетов пространство между стёклами заполняются специальным газом — аргоном. При этом коэффициент сопротивления взрастает на десять процента. Идеальным решением для квартиры станут двухкамерные и однокамерные энергосберегающие конструкции. Они имеют высокий уровень теплоизоляции.

Многие производители рекомендуют применять инновационные технологии, которые обеспечивают низкую тепловую проводимость. Инновационные методы позволяют улучшить теплоизоляционные характеристики однокамерных, и двухкамерных конструкций. Таким образом, становится возможным уменьшить образование конденсата за счёт повышения температурного режима.

Дополнительный параметр — шумоизоляция, её можно внедрить при помощи следующих способов:

  1. Коэффициент сопротивления теплопередачи таблицаприменения стёкол большей толщины;
  2. применять комбинацию стёкол различной толщины, что позволяет избежать звукового резонанса.

Снижение внешних шумов становится возможным только на несколько Дб. Таким образом, значительно не может быть понижен уровень восприятия человеком звуков. Воздействие акустического давления частоты и интенсивности звуковых колебаний напрямую влияют на человеческий орган и находится в зависимости от него.

Звукоизоляция представляет собой параметр стеклопакета, который может определить уровень снижения посторонних шумов, которые будут доноситься с улицы. Таким образом, при разнице звукоизоляции в 32 Дб, который оценивается в городе, как 70 Дб, ослабляется до 38 Дб. Улучшить показатели звукоизоляции возможно, подобрав асимметричные различной толщине воздушные камеры с разнообразной толщиной стёкол.

Расчёт и таблица коэффициента теплопроводности

Расчет с учетом сопротивления теплопровводности Теплопроводность показывает, насколько эффективными изоляционными свойствами будет обладать стеклопакет. При этом малое значение отображается как «к» — небольшая теплопередача в соответствии с незначительной потерей тепла через конструкцию. В то же время теплоизоляционные свойства являются высокими. При этом коэффициент теплопроводности выражается количеством тепла в Вт, который проходит через 1 м2, которая ограждает его конструкции с разницей в температуре в обоих средах на один градус. Измеряется показатель как Вт/м2.

Высокий показатель теплопроводности может быть у металлов, что отображается как низкая температура. В этом случае изделие не имеет воздушных камер, которые обладают низкой теплопроводностью. Для строительных конструкций такой вариант можно считать оптимальным и востребованным. Независимо от материала окна, производитель обязан отображать на своей продукции коэффициент теплопередачи специальной маркировкой.

Конструкции, методы и материалы при расчёте теплового сопротивления

Чтобы повысить сопротивление теплопередаче, понадобится использовать наружные материалы с низким показателем коэффициента теплопроводности. Новые технологии строительства и материалы позволяют достичь оптимальных результатов. Среди популярных и востребованных наружных материалов стоит отметить: керамзитный блок, дерево, пеноблок, сэндвич-панели, а также керамический блок.

  1. Какиие утеплители лучшеДерево является тёплым экологичным материалом. Многие предпочитают использовать его для строительства частных домов. Это может быть сруб, оцилиндрованное бревно либо прямоугольный брус. Довольно часто применяется сосна, ель. При этом капризный материал требует дополнительных мер защиты от атмосферного воздействия и насекомых.
  2. Сэндвич-панель — это новый продукт на отечественном рынке материалов. Его популярность в частном строительстве возрастает в последнее время. К преимуществам стоит отнести невысокую стоимость. А также хорошее сопротивление теплопередачи. Такой параметр достигается за счёт строения. С наружных сторон находится листовой материал. Это может быть плита, фанера либо металлический профиль. Внутри системы находится утеплитель из пены либо минеральная вата.
  3. Строительный блок имеет высокий коэффициент сопротивления теплопередаче, в отличие от кирпича. Он может быть достигнут из-за наличия в его структуре воздушных камер или вспененной структуры материала. Таким образом, некоторые керамические блоки имеют специальные отверстия. Они могут быть выложены параллельно кладке стены. Получаемые на выходе камеры с воздухом являются препятствием для теплопередачи. В других строительных блоках существует высокий коэффициент сопротивления теплопередачи, который может выражаться в пористой структуре. При этом он может быть достигнут различными способами. Первым способом является химическая реакция. Второй способ — это смешивание цементной смеси с пористым материалом. Такие варианты применимы для полистиролбетонных и керамзитобетонных блоков.

Применение утеплителя: нюансы коэффициента теплового сопротивления

Как сравнить коэффициент теплопроводности материаловЕсли имеется недостаточное сопротивление теплопередачи, это может зависеть от материала стены, к примеру, если речь идёт о кирпиче. Тогда необходимые меры могут быть применимы в качестве утеплителя. Утепление проводится только снаружи кирпича, но при необходимости может быть применимо по внутренней части для несущих стен. На сегодня существует множество утеплителей, которые повышают коэффициент сопротивления теплопередачи. К таким материалам стоит отнести пеностекло, экструдированный пенополистирол, минеральная вата, пенополиуретан и другие материалы.

Все они имеют определённые коэффициенты теплопроводности для утепления большинства стен при толщине в десять миллиметров, что является достаточным показателем. При этом нужно учитывать паропроницаемость утеплителя и материала. Остальные утеплители могут применяться для различных стен, для которых оставляется специальный зазор между стеной и утеплителем.

Надёжные компании-производители на своей продукции ставят коэффициент сопротивления теплопередачи стеклопакета на любых технологических операциях, особенно в процессе изготовления продукции. Прилагаемая таблица расчётов поможет определить коэффициент любого процесса, включая нанесение специальных покрытий и заполнение междустекольного пространства.

Этот показатель характеризуется не только конкретной функцией теплозащиты, но и качеством всего процесса производства и готового продукта. Таким образом, рекомендуется держать под контролем этот показатель и регулярно мерить разнообразные этапы изготовления готового образца продукции.

Важное место в строительстве занимает тепловое сопротивление материала. Чем стена теплее, тем будет меньший показатель плотности и прочности его. При планировке дома, заказывая услугу утепления стен, а также при покупке стеклопакетов важно учитывать коэффициент сопротивления теплопередачи. На этикетке у производителя можно найти таблицу с этим показателем, на маркировке и паспорте этого продукта. Стоит помнить, что для обеспечения нормальной теплопередачи в квартире коэффициент сопротивления должен быть не менее 0,45. Все меньшие значения не будут считаться эффективными.

Сопротивление теплопередаче ограждающих конструкций. Расчет, таблица сопротивления теплопередаче :: BusinessMan.ru

При строительстве частных и многоквартирных домов приходится учитывать множество факторов и соблюдать большое количество норм и стандартов. К тому же перед строительством создается план дома, проводятся расчеты по нагрузке на несущие конструкции (фундамент, стены, перекрытия), коммуникациям и теплосопротивлению. Расчет сопротивления теплопередаче не менее важен, чем остальные. От него не только зависит, насколько будет дом теплым, и, как следствие, экономия на энергоносителях, но и прочность, надежность конструкции. Ведь стены и другие элементы ее могут промерзать. Циклы заморозки и разморозки разрушают строительный материал и приводят к обветшалости и аварийности зданий.

Теплопроводность

Любой материал способен проводить тепло. Этот процесс осуществляется за счет движения частиц, которые и передают изменение температуры. Чем они ближе друг к другу, тем процесс теплообмена происходит быстрее. Таким образом, более плотные материалы и вещества гораздо быстрее охлаждаются или нагреваются. Именно от плотности прежде всего зависит интенсивность теплопередачи. Она численно выражается через коэффициент теплопроводности. Он обозначается символом λ и измеряется в Вт/(м*°C). Чем выше этот коэффициент, тем выше теплопроводность материала. Обратной величиной для коэффициента теплопроводности является тепловое сопротивление. Оно измеряется в (м2*°C)/Вт и обозначается буквой R.

Применение понятий в строительстве

Для того чтобы определить теплоизоляционные свойства того или иного строительного материала, используют коэффициент сопротивления теплопередаче. Его значение для различных материалов дается практически во всех строительных справочниках.

Так как большинство современных зданий имеет многослойную структуру стен, состоящую из нескольких слоев различных материалов (внешняя штукатурка, утеплитель, стена, внутренняя штукатурка), то вводится такое понятие, как приведенное сопротивление теплопередаче. Оно рассчитывается так же, но в расчетах берется однородный аналог многослойной стены, пропускающий то же количество тепла за определенное время и при одинаковой разности температур внутри помещения и снаружи.

Приведенное сопротивление теплопередаче

Приведенное сопротивление рассчитывается не на 1 м кв., а на всю конструкцию или какую-то ее часть. Оно обобщает показатель теплопроводности всех материалов стены.

Тепловое сопротивление конструкций

Все внешние стены, двери, окна, крыша являются ограждающей конструкцией. И так как они защищают дом от холода по-разному (имеют различный коэффициент теплопроводности), то для них индивидуально рассчитывается сопротивление теплопередаче ограждающей конструкции. К таким конструкциям можно отнести и внутренние стены, перегородки и перекрытия, если в помещениях имеется разность температур. Здесь имеются в виду помещения, в которых разность температур значительная. К ним можно отнести следующие неотапливаемые части дома:

  • Гараж (если он непосредственно примыкает к дому).
  • Прихожая.
  • Веранда.
  • Кладовая.
  • Чердак.
  • Подвал.

Расчет сопротивления теплопередаче

В случае если эти помещения не отапливаются, то стену между ними и жилыми помещениями необходимо также утеплять, как и наружные стены.

Тепловое сопротивление окон

В воздухе частицы, которые участвуют в теплообмене, находятся на значительном расстоянии друг от друга, а следовательно, изолированный в герметичном пространстве воздух является лучшим утеплителем. Поэтому все деревянные окна раньше делались с двумя рядами створок. Благодаря воздушной прослойке между рамами сопротивление теплопередаче окон повышается. Этот же принцип применяется для входных дверей в частном доме. Для создания подобной воздушной прослойки ставят две двери на некотором расстоянии друг от друга или делают предбанник.

Такой принцип остался и в современных пластиковых окнах. Единственное отличие – высокое сопротивление теплопередачи стеклопакетов достигается не за счет воздушной прослойки, а за счет герметичных стеклянных камер, из которых откачан воздух. В таких камерах воздух разряжен и практически нет частиц, а значит, и передавать температуру нечему. Поэтому теплоизоляционные свойства современных стеклопакетов намного выше, чем у старых деревянных окон. Тепловое сопротивление такого стеклопакета – 0,4 (м2*°C)/Вт.

Сопротивление теплопередаче окон

Современные входные двери для частных домов имеют многослойную структуру с одним или несколькими слоями утеплителей. К тому же дополнительное теплосопротивление дает установка резиновых или силиконовых уплотнителей. Благодаря этому дверь становится практически герметичной и установка второй не требуется.

Расчет теплового сопротивления

Расчет сопротивления теплопередаче позволяет оценить потери тепла в Вт и рассчитать необходимое дополнительное утепление и потери тепла. Благодаря этому можно грамотно подобрать необходимую мощность отопительного оборудования и избежать лишних трат на более мощное оборудование или энергоносители.

Сопротивление теплопередаче ограждающей конструкции

Для наглядности рассчитаем тепловое сопротивление стены дома из красного керамического кирпича. Снаружи стены будут утеплены экструдированным пенополистиролом толщиной 10 см. Толщина стен будет два кирпича – 50 см.

Сопротивление теплопередаче вычисляется по формуле R = d/λ, где d – это толщина материала, а λ – коэффициент теплопроводности материала. Из строительного справочника известно, что для керамического кирпича λ = 0,56 Вт/(м*°C), а для экструдированного пенополистирола λ = 0,036 Вт/(м*°C). Таким образом, R (кирпичной кладки) = 0,5 / 0,56 = 0,89 (м2*°C)/Вт, а R (экструдированного пенополистирола) = 0,1 / 0,036= 2,8 (м2*°C)/Вт. Для того чтобы узнать общее теплосопротивление стены, нужно сложить эти два значения: R = 3,59 (м2*°C)/Вт.

Таблица теплового сопротивления строительных материалов

Всю необходимую информацию для индивидуальных расчетов конкретных построек дает представленная ниже таблица сопротивления теплопередаче. Образец расчетов, приведенный выше, в совокупности с данными таблицы может также использоваться и для оценки потери тепловой энергии. Для этого используют формулу Q = S * T / R, где S – площадь ограждающей конструкции, а T – разность температур на улице и в помещении. В таблице приведены данные для стены толщиной 1 метр.

Материал R, (м2 * °C)/Вт
Железобетон 0,58
Керамзитобетонные блоки 1,5-5,9
Керамический кирпич 1,8
Силикатный кирпич 1,4
Газобетонные блоки 3,4-12,29
Сосна 5,6
Минеральная вата 14,3-20,8
Пенополистирол 20-32,3
Экструдированный пенополистирол 27,8
Пенополиуретан 24,4-50

Теплые конструкции, методы, материалы

Для того чтобы повысить сопротивление теплопередаче всей конструкции частного дома, как правило, используют строительные материалы с низким показателем коэффициента теплопроводности. Благодаря внедрению новых технологий в строительстве таких материалов становится все больше. Среди них можно выделить наиболее популярные:

  • Дерево.
  • Сэндвич-панели.
  • Керамический блок.
  • Керамзитобетонный блок.
  • Газобетонный блок.
  • Пеноблок.
  • Полистиролбетонный блок и др.

Дерево является весьма теплым, экологически чистым материалом. Поэтому многие при строительстве частного дома останавливают выбор именно на нем. Это может быть как сруб, так и оцилиндрованное бревно или прямоугольный брус. В качестве материала в основном используется сосна, ель или кедр. Тем не менее это довольно капризный материал и требует дополнительных мер защиты от атмосферных воздействий и насекомых.

Сопротивление теплопередачи стены

Сэндвич-панели – это довольно новый продукт на отечественном рынке строительных материалов. Тем не менее его популярность в частном строительстве очень возросла в последнее время. Ведь его основными плюсами является сравнительно невысокая стоимость и хорошее сопротивление теплопередаче. Это достигается за счет его строения. С наружных сторон находится жесткий листовой материал (ОСП-плиты, фанера, металлический профиль), а внутри — вспененный утеплитель или минеральная вата.

Сопротивление теплопередаче

Строительные блоки

Высокое сопротивление теплопередаче всех строительных блоков достигается за счет наличия в их структуре воздушных камер или вспененной структуры. Так, например, некоторые керамические и другие виды блоков имеют специальные отверстия, которые при кладке стены идут параллельно ей. Таким образом, создаются закрытые камеры с воздухом, что является довольно эффективной мерой препятствия теплопередачи.

В других строительных блоках высокое сопротивление теплопередачи заключается в пористой структуре. Это может достигаться различными методами. В пенобетонных газобетонных блоках пористая структура образуется благодаря химической реакции. Другой способ – это добавление в цементную смесь пористого материала. Он применяется при изготовлении полистиролбетонных и керамзитобетонных блоков.

Таблица сопротивления теплопередаче образец

Нюансы применения утеплителей

Если сопротивление теплопередачи стены недостаточно для данного региона, то в качестве дополнительной меры могут применяться утеплители. Утепление стен, как правило, производится снаружи, но при необходимости может применяться и по внутренней части несущих стен.

На сегодняшний день существует множество различных утеплителей, среди которых наибольшей популярностью пользуются:

  • Минеральная вата.
  • Пенополиуретан.
  • Пенополистирол.
  • Экструдированный пенополистирол.
  • Пеностекло и др.

Все они имеют очень низкий коэффициент теплопроводности, поэтому для утепления большинства стен толщины в 5-10 мм, как правило, достаточно. Но при этом следует учесть такой фактор, как паропроницаемость утеплителя и материала стен. По правилам, этот показатель должен возрастать наружу. Поэтому утепление стен из газобетона или пенобетона возможно только с помощью минеральной ваты. Остальные утеплители могут применяться для таких стен, если делается специальный вентиляционный зазор между стеной и утеплителем.

Заключение

Теплосопротивление материалов – это важный фактор, который следует учитывать при строительстве. Но, как правило, чем стеновой материал теплее, тем меньше плотность и прочность на сжатие. Это следует учитывать при планировке дома.

Коэффициент сопротивления теплопередаче. Что это?

С июня 2019 года вступают в силу новые требования к остеклению зданий в России. 

Минстрой РФ внес поправки в СП 50.13330 «Тепловая защита зданий», 

До этого требования к сопротивлению теплопередаче светопрозрачных конструкций в России не пересматривались целых 20 лет. Они давно морально устарели по отношению к качеству продукции, представленной на современном рынке остеклений. 

Но всё по порядку. 



Что означает коэффициент сопротивления теплопередаче?
Площадь стеклопакета составляет значительную часть пластикового окна, а если быть точнее — 80% оконной конструкции. Поэтому вам нужно установить на окнах качественные стеклопакеты, чтобы зимой и летом у вас в доме всегда был оптимальный климат. Это позволит сэкономить потребление электрической энергии на кондиционирование и
отопление. Поэтому оконная конструкция должна обладать максимальными тепло- и звукоизоляционными свойствами. Для этого просчитывается коэффициент сопротивления теплопередаче.
  • Коэффициент сопротивления теплопередаче — это степень сопротивления изделия переноса тёплого воздуха. Благодаря этому расчёту можно узнать, какое количество тепла уйдёт из помещения с учётом разницы температуры в один градус

  • Понятие теплопередачи — это отдача тепла с одной стороны на другую. Таким образом, температурный показатель у одной стороны выше, чем у другой. Сам процесс проходит между конструкцией. Поэтому при выборе подходящих стеклопакетов учитывается коэффициент сопротивления теплопередач. Коэффициент тепловой передачи определяется количеством тепла — Вт. Он проходит через стороны помещения — м2. При этом определяется между ними разница на один градус — Ro. В Российской федерации действует только такое обозначение, которое помогает правильно оценить теплозащитные свойства строительных конструкций

  • Коэффициент сопротивления — это величина, которая оценивает качество теплозащитных функций окна. Таким образом, чем меньше проходит потерь тепла, тем выше будет показатель сопротивления теплопередаче

Как повысить теплоизоляцию стеклопакета

Чтобы повысить теплоизоляцию стеклопакета, можно рассматривать несколько способов: 

  • увеличение толщины стеклопакета, что изменит расстояние между сторонами
  • увеличение количества камер при установке двухкамерных стеклопакетов
Стоит отметить, что однокамерные стеклопакеты на рынке представлены в двух вариантах показателя толщины стёкол — 24 и 32 мм. Но несмотря на разницу более чем в 10 мм они имеют одинаковые теплоизоляционные характеристики. Происходит это из-за конвекции между стёклами, поэтому расстояние между сторонами не может изменить коэффициент сопротивления.

Какие нормы коэффициента в России?
Ранее не рекомендовалось в жилых помещениях ставить стеклопакет с сопротивлением менее 0,45. Этот показатель являлся строительной нормой, и при соблюдении всех правил стеклопакеты не могли быть изготовлены менее этого значения. Однако требования к сопротивлению теплопередаче светопрозрачных конструкций в России не пересматривались целых 20 лет. Они давно морально устарели по отношению к качеству продукции, представленной на современном рынке остеклений.

С июня 2019 года вступают в силу поправки в СП 50.13330 «Тепловая защита зданий». Были определены новые требования к сопротивлению теплопередаче светопрозрачных конструкций для всех климатических зон России. Так, согласно изменённому СП 50.13330 приведенное сопротивление теплопередаче светопрозрачной конструкции для г. Москва будет составлять 0.66 (ранее 0.49), что соответствует, например, окну с двухкамерным стеклопакетом с двумя низкоэмиссионными стеклами. Для г. Ижевск коэффициент сопротивления теплопередаче 0,72 (ранее 0,58).


Новые требования идут в ногу с трендом энергосбережения, позволят строить более комфортные жилые и административные здания и вступят в силу уже в середине 2019 года, заменив устаревшие нормы 20 летней давности. Российская индустрия производства и переработки стекла полностью готова производить окна и фасады по новым нормам. Очень важно проинформировать архитекторов и производителей светопрозрачных конструкций о новых нормах и путях их достижения.


Если вам нужны энергоэффективные окна, но вы не знаете с чего начать, то просто позвоните тел.: 22-00-44. Консультанты при общении всегда стараются подобрать решение, которое подходит конкретной квартире и конкретному дому.

Заказать звонок


сопротивление теплопередаче — это… Что такое сопротивление теплопередаче?


сопротивление теплопередаче

3.18 сопротивление теплопередаче: Способность жалюзи-роллеты уменьшать теплообмен между двумя средами.

Смотри также родственные термины:

3.29 сопротивление теплопередаче конструкции окна : Величина, обратная коэффициенту теплопередачи.

3.14 сопротивление теплопередаче конструкции окна: Величина, обратная коэффициенту теплопередачи.

3.9. Сопротивление теплопередаче ограждающей конструкции

Ro

м2 · °С/Вт

3.9. Сопротивление теплопередаче ограждающей конструкции

R0

м2×°С/Вт

3.12 сопротивление теплопередаче ограждающей конструкции R0, м2 · °C/Вт: Сумма сопротивления тепловосприятию Rsi, термических сопротивлений слоев Rk, сопротивления теплоотдаче Rse ограждающей конструкции.

Сопротивление теплопередаче однородной ограждающей конструкции , м2×°С/Вт- отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях стационарной теплопередачи, вычисляемое по формуле

,                                                     (2)

где tв, tн — температура окружающей среды по обе стороны ограждающей конструкции, °С.

Приведенное термическое сопротивление неоднородной ограждающей конструкции , м2×°С/Вт — усредненное по площади расчетной поверхности неоднородной ограждающей конструкции значение термического сопротивления, вычисляемое по формуле

,                                                      (3)

где Fi — площадь i-й однородной зоны ограждающей конструкции, м2;

Rki термическое сопротивление i-ой однородной зоны ограждающей конструкции, м2×°СВт.

3.6 сопротивление теплопередаче однородной ограждающей конструкции Ro, м2 ∙ °С/Вт: Отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях стационарной теплопередачи, вычисляемое по формуле

                                                       (2)

где τв, τн — температура окружающей среды по обе стороны ограждающей конструкции, °С;

3.16 сопротивление теплопередаче светопрозрачной ограждающей конструкции : Способность СПК противостоять переносу теплоты от среды с более высокой температурой к среде с более низкой температурой и численно выраженная, как отношение разности внутренней и наружной температур воздуха к плотности стационарного теплового потока, проходящего через конструкцию.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • Сопротивление теплообмену (теплоотдаче или тепловосприятию)
  • сопротивление теплопередаче конструкции окна

Смотреть что такое «сопротивление теплопередаче» в других словарях:

  • СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ — способность одно или многослойного ограждения препятствовать теплообмену между двумя теплоносителями, разделёнными этим ограждением, оцениваемая величиной, обратной коэффициенту теплопередачи (Болгарский язык; Български) съпротивление при… …   Строительный словарь

  • Сопротивление теплопередаче однородной ограждающей конструкции — м2×°С/Вт отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях стационарной теплопередачи, вычисляемое по формуле ,                              …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление теплопередаче ограждающей конструкции — – величина, обратная коэффициенту теплопередачи ограждающей конструкции. [МГСН 2.01 99] Рубрика термина: Тепловые свойства материалов Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Сопротивление теплопередаче однородной ограждающей конструкции — – отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях стационарной теплопередачи. [ГОСТ 26602.1 99] Рубрика термина: Тепловые свойства… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Сопротивление теплопередаче ограждающей конструкции — 3.9. Сопротивление теплопередаче ограждающей конструкции Ro м2 · °С/Вт Источник: ТСН 301 23 2000 ЯО: Теплозащита зданий жилищно гражданского назначения 3.9. Сопротивление теплопередаче ограждающей конструкции R0 м2×°С/Вт Источник …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче ограждающей конструкции R0, — 3.12 сопротивление теплопередаче ограждающей конструкции R0, м2 · °C/Вт: Сумма сопротивления тепловосприятию Rsi, термических сопротивлений слоев Rk, сопротивления теплоотдаче Rse ограждающей конструкции. Источник …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче однородной ограждающей конструкции Ro, м2 ∙ °С/Вт — 3.6 сопротивление теплопередаче однородной ограждающей конструкции Ro, м2 ∙ °С/Вт: Отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях… …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче конструкции окна — 3.29 сопротивление теплопередаче конструкции окна : Величина, обратная коэффициенту теплопередачи. Источник: СТО НОСТРОЙ 2.23.61 2012: Конструкции ограждающие …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче светопрозрачной ограждающей конструкции — 3.16 сопротивление теплопередаче светопрозрачной ограждающей конструкции : Способность СПК противостоять переносу теплоты от среды с более высокой температурой к среде с более низкой температурой и численно выраженная, как отношение разности… …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче ограждающей конструкции — величина, обратная коэффициенту теплопередачи ограждающей конструкции. (Смотри: МГСН 2.01 99. Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению.) Источник: Дом: Строительная терминология , М.: Бук пресс, 2006 …   Строительный словарь


СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ — это… Что такое СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ?


СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ
способность одно- или многослойного ограждения препятствовать теплообмену между двумя теплоносителями, разделёнными этим ограждением, оцениваемая величиной, обратной коэффициенту теплопередачи

(Болгарский язык; Български) — съпротивление при топлопреминаване

(Чешский язык; Čeština) — odpor při prostupu tepla

(Немецкий язык; Deutsch) — Wärmedurchgangswiderstand

(Венгерский язык; Magyar) — hőátbocsátási ellenállás

(Монгольский язык) — дулаан дамжуулалтын эсэргүүцэл

(Польский язык; Polska) — opór przenikania ciepła

(Румынский язык; Român) — rezistenţă la transmisia căldurii

(Сербско-хорватский язык; Српски језик; Hrvatski jezik) — otpor prolazu toplote

(Испанский язык; Español) — resistencia a la termotransferencia

(Английский язык; English) — resistance to heat transfer

(Французский язык; Français) — résistance au transfert de chaleur

Источник: Терминологический словарь по строительству на 12 языках

Строительный словарь.

  • СОПРОТИВЛЕНИЕ ТЕПЛООТДАЧЕ
  • СОПРОТИВЛЕНИЕ ТЕРМИЧЕСКОЕ

Смотреть что такое «СОПРОТИВЛЕНИЕ ТЕПЛОПЕРЕДАЧЕ» в других словарях:

  • сопротивление теплопередаче — 3.18 сопротивление теплопередаче: Способность жалюзи роллеты уменьшать теплообмен между двумя средами. Источник: ГОСТ Р 52502 2012: Жалюзи роллеты металлические. Технические условия оригинал документа Смотри также родственные термины …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление теплопередаче однородной ограждающей конструкции — м2×°С/Вт отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях стационарной теплопередачи, вычисляемое по формуле ,                              …   Словарь-справочник терминов нормативно-технической документации

  • Сопротивление теплопередаче ограждающей конструкции — – величина, обратная коэффициенту теплопередачи ограждающей конструкции. [МГСН 2.01 99] Рубрика термина: Тепловые свойства материалов Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Сопротивление теплопередаче однородной ограждающей конструкции — – отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях стационарной теплопередачи. [ГОСТ 26602.1 99] Рубрика термина: Тепловые свойства… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Сопротивление теплопередаче ограждающей конструкции — 3.9. Сопротивление теплопередаче ограждающей конструкции Ro м2 · °С/Вт Источник: ТСН 301 23 2000 ЯО: Теплозащита зданий жилищно гражданского назначения 3.9. Сопротивление теплопередаче ограждающей конструкции R0 м2×°С/Вт Источник …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче ограждающей конструкции R0, — 3.12 сопротивление теплопередаче ограждающей конструкции R0, м2 · °C/Вт: Сумма сопротивления тепловосприятию Rsi, термических сопротивлений слоев Rk, сопротивления теплоотдаче Rse ограждающей конструкции. Источник …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче однородной ограждающей конструкции Ro, м2 ∙ °С/Вт — 3.6 сопротивление теплопередаче однородной ограждающей конструкции Ro, м2 ∙ °С/Вт: Отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях… …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче конструкции окна — 3.29 сопротивление теплопередаче конструкции окна : Величина, обратная коэффициенту теплопередачи. Источник: СТО НОСТРОЙ 2.23.61 2012: Конструкции ограждающие …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче светопрозрачной ограждающей конструкции — 3.16 сопротивление теплопередаче светопрозрачной ограждающей конструкции : Способность СПК противостоять переносу теплоты от среды с более высокой температурой к среде с более низкой температурой и численно выраженная, как отношение разности… …   Словарь-справочник терминов нормативно-технической документации

  • сопротивление теплопередаче ограждающей конструкции — величина, обратная коэффициенту теплопередачи ограждающей конструкции. (Смотри: МГСН 2.01 99. Энергосбережение в зданиях. Нормативы по теплозащите и тепловодоэлектроснабжению.) Источник: Дом: Строительная терминология , М.: Бук пресс, 2006 …   Строительный словарь


ГОСТ Р 54851-2011 Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *