Расчет столбчатого фундамента под колонну – Основание под фундаменты колонн. Расчет фундамента под металлическую колонну, стальную: сбор нагрузок

Содержание

6. Расчет монолитного столбчатого фундамента под колонну.

При выполнении расчета фундамента считается, что грунты основания не имеют пучинистых свойств. Поэтому глубина заложения фундамента не связывается с глубиной промерзания грунта. Также учитывается, что нагрузка на фундамент передается от колонны (Мmax=157,69 кНм, N=723,16 кН, Q=18,18 кН) и панелей ограждения (Nпанел.=(17,83+13,3)1,10,95+21,21,050,95=69,7+2,4=72,1 кН, М=72,10,4=28,84 кНм). Направление действия нагрузок см. рис.6.1.

Исходные данные:

  • усилия: N=723,16+72,1=795,26 кН, М=157,69+28,84=186,53 кНм, Q=18,18 кН,

  • материалы: бетон В15 (Rbt=0,75 МПа), арматура класса А400,

  • условное расчетное сопротивление грунта R0=0,25 МПа

Определение размеров подошвы фундамента

Площадь подошвы фундамента:

Nn=795,26/1,15=691,53 кНм

R0=0,20МПа— условное расчетное сопротивление грунта;

m=20кН/м3 – среднее значение объемного веса материала фундамента и грунта на обрезе фундамента,

Н=1м – предварительно назначенная высота фундамента.

стороны фундамента

Размеры подошвы фундамента принимаютсяb=1,8 м, а=2,1м (а/b1,2). Площадь подошвы фундамента составляет А=1,82,1=3,78 м2, момент сопротивления – W=

Определение высоты фундамента

Высота фундамента назначается из условийанкеровки колонны и арматуры колонны в фундамент. Высоту фундамента составляет длина анкеровки плюс 250 мм (смотри рисунок 6.1).

Высота фундамента из условия анкеровки колонны:

Нф

=hk+250=700+250=950 мм=0,95м

Высота фундамента из условия анкеровки арматуры колонны 20 А400 :

Нф=lan+250=300+250=550мм

, .

При определении расчетного сопротивления сцепления арматуры с бетоном Rbond принимаются следующие значения коэффициентов:

1=2,5 (для класса арматуры А400) и 2=1 (для 20). Подставляя в формулу базовой длины анкеровки l0,anзначения коэффициентов 1, 2, а также выражая площадь поперечного сечения арматуры и периметр арматуры через диаметр (), преобразуем формулу:

Длина анкеровки арматуры колонны при =0,75 (для сжатых стержней периодического профиля) и отношении площади поперечного сечения арматуры колонны требуемой по расчету и фактически установленной 0,68/12,56=0,054 составляет:

.

Вычисленную длину анкеровки арматуры необходимо сравнить с минимально допустимой: 0,3l0,an=0,3947=285 мм, 15d=15х20=300 мм и 200 мм.

Окончательно высота фундамента принимается — Нф=0,95 м. По высоте фундамент формируется из трех ступеней. Высота ступеней 350+300+300=950 мм. Минимальная толщина стенок неармированного стакана должна приниматься не менее 0,75 высоты верхней ступени, то есть 0,75300=225 мм (см. рис.6.1).

Проверка прочности основания под подошвой фундамента.

Нормативное значение нагрузок на уровне подошвы фундамента:

Мn=,

Gn=abНфmn=2,41,80,95200,95=77,98 кН,

Nn= 691,53+77,98=769,51 кН.

Максимальное значение давления под подошвой фундамента:

pmax=>1,2R0=

=1,2250=300 кН/м2, условие не выполняется. Требуется увеличение размеров подошвы фундамента: а=2,4 м, b=1,8 м. При этом изменяются A=4,32 м2, W=1,73 м3, Gn=77,98 кН, Nn= 691,53+77,98=769,51 кН.

Максимальное значение давления под подошвой фундамента:

pmax= — условие выполняется.

Минимальное значение давления под подошвой фундамента:

Pmin=— условие выполняется.

Определение площади рабочей арматуры.

Расчет ведется в плоской постановке: рассматривается сечение по фундаменту в плоскости рамы и в перпендикулярном плоскости рамы направлении (см. рис. 6.1).

Фундамент будет изгибаться под действием давления грунта р. Так как высота фундамента переменная, то расчет ведется в предположении изгиба как консоли нижней ступени (сечение 1-1), затем вместе нижней и средней ступеней (сечение 2-2) и, наконец, всего фундамента (сечение 3-3). На рис. 6.1 показаны ординаты эпюры давления грунта от расчетных нагрузок, необходимые для выполнения вычислений. Значения определены графически.

Момент в консоли определяется по формуле М=(нагрузка равномерно распределенная со средним значениемр в пределах длины консоли). Длина консоли l, например при расчете нижней ступени, равна . Размерностьр в формуле определения момента М — в кН/м, в то время как до этого

р было определено в кН/м2. Для перехода к размерности плоской задачи: p=pb (сечение в плоскости рамы), p=pа (сечение перпендикулярное плоскости рамы)

М=.

Фундамент армируется сеткой, укладываемой с соблюдением защитного слоя 40 мм у подошвы фундамента. Для армирования фундамента диаметр арматурных стержней принимается не менее 12. Площадь рабочей арматуры определяется по формуле алгоритма расчета изгибаемых элементов по нормальному сечению:

.

Рабочая высота сечения составляет h0=ha (a принимается 0,05 м, где а — расстояние от середины сечения продольной рабочей арматуры до нижней грани поперечного сечения фундамента).

Краевые ординат эпюры давления грунта (расчетные нагрузки):

М=,

G=abНфmnf=2,41,80,95200,951,1=85,78 кН,

Nn= 795,26+85,78=881,0 кН.

Максимальное значение давления под подошвой фундамента:

pmax=.

Минимальное значение давления под подошвой фундамента:

Pmin=.

Результаты расчета сведены в таблицу 6.1.

Таблица 6.1

сечения

Момент, кНм

h0, м

Площадь рабочей

арматуры, см2

1-1

М=

0,125307,0(2,4-1,8)1,8=41,44

0,30

2-2

М=

0,125294,7(2,4-1,3)1,8=72,94

0,60

3-3

М=

0,125275,7(2,4-0,7)1,8=105,45

0,90

4-4

М=

0,125203,9(1,8-0,4)2,4=85,64

0,89*

*-для верхних стержней сетки

Для сетки армирования фундамента принимаются стержни 10А400 с шагом S=300 мм (подбор сетки смотри в разделе 7).

Рис. 6.1. К расчету монолитного столбчатого фундамента под колонну

Расчет столбчатого фундамента под колонну

Расчёт фундамента под колонну

3.1. Исходные данные

Рассчитать и законструировать столбчатый сборный фундамент под колонну среднего ряда. Бетон класса С 20 /25, рабочая арматура класса S400.

Таблица 8. Исходные данные

3.2. Расчет фундамента под колонну

3.2.1. Определяем глубину заложения фундамента из условия длины колонны:

Определяем глубину заложения фундамента из условий заложения грунта:

Рис. 15. Определение глубины заложения фундамента

По схематической карте нормативной глубины промерзания грунтов для г. Гродно определяем глубину промерзания – 1,0 м.

Dф2 =150+1000+100=1250 мм 16 /20 при сжатии:

– Расчетное сопротивление бетона класса С 16 /20 при растяжении:

– Расчетное сопротивление арматуры класса S500 fyd = 450 МПа.

Определяем предварительные размеры подошвы фундамента:

Тогда размер стороны квадратной подошвы фундамента:

Вносим поправку на ширину подошвы и на глубину заложения фундамента.

Тогда размер стороны квадратной подошвы фундамента:

b = √A = √2,87 = 1,69 м.

Окончательно принимаем: b = 1,8 м (кратно 0,3 м).

Определяем среднее давление под подошвой фундамента от действующей нагрузки:

Определяем расчётное сопротивление грунта:

k – коэффициент, принимаемый равным: k = 1, если прочностные характеристики грунта (φ и с) определены непосредственными испытаниями, и k = 1.1, если они приняты по таблицам, k = 1,1,

kz = 1 при b ’ II = γII = 18 кН/м 3 – удельный вес грунта соответственно ниже и выше подошвы фундамента.

R = 1,3 ⋅ 1,2/ 1,1 [1,81⋅1⋅1,8⋅18+8,24⋅1,4⋅18+9,97⋅4]= 434,75 МПа> 285,94 кПа

Следовательно, расчёт по II группе предельных состояний можно не производить.

3.2.3. Расчёт тела фундамента

Определяем реактивное давление грунта:

Определяем размеры фундамента.

Рабочая высота фундамента из условия продавливания колонны через тело фундамента:

+ 0,5⋅ √( 1128,23 / 1,0⋅1,47⋅10 3 + 348,22) = 267 мм

c = a + 0.5⋅∅ , где: a = 45 мм – толщина защитного слоя бетона для арматуры (для сборных фундаментов).

с = 50 мм – расстояние от центра тяжести арматуры до подошвы фундамента.

Полная высота фундамента:

Для обеспечения жесткого защемления колонны в фундаменте и достаточной анкеровки ее рабочей арматуры высота фундамента принимается:

∅ = 18 мм – диаметр рабочей арматуры колонны,

fbd = 2,0 МПа – предельное напряженное сцепление для бетона класса С 20 /25,

Принимаем окончательно высоту фундамента:

Hf = max(Hf1, Hf2) = 1013 мм. Принимаем Hf = 1050 мм – кратно 150 мм.

Рабочая высота фундамента:

d = H − c = 1050−50 =1000 мм.

Принимаем первую ступень высотой: h1 = 300 мм.

Принимаем остальные размеры фундамента.

Рис.16. Определение размеров фундамента

Высота верхней ступени фундамента:

Глубина стакана hcf = 1,5 ⋅ hc + 50 = 1,5 ⋅ 300 + 50 = 500 мм, принимаем hcf = 650 мм. Так как h2 = 750 мм bc = 225 мм.

Следовательно, требуется армирование стенки стакана.

Т. к. bc+75=225+75=300 мм = 348,22⋅0,1/1,0⋅1,27⋅10 3 = 27 мм.,

что не превышает принятую d1 = 250 мм.

3.2.4. Расчет армирования подошвы фундамента

Площадь сечения рабочей арматуры сетки, укладываемой по подошве фундамента, определяется из расчета на изгиб консольного выступа ступеней, заделанных в массив фундамента, в сечениях по грани колонны и по граням ступеней.

Значения изгибающих моментов в этих сечениях:

Требуемое сечение арматуры:

As1 = MI-I / 0,9⋅ d ⋅ α ⋅ fyd = 176,29⋅10 6 / 0,9⋅1000⋅1,0⋅365 = 435,28 мм 2 ,

As2 = MII-II / 0,9⋅ d1 ⋅ α ⋅ fyd = 63,46⋅10 6 / 0,9⋅250⋅1,0⋅365 = 626,77 мм 2 ,

Арматуру подбираем по максимальной площади:

Принимаем шаг стержней S = 200 мм.

Количество стержней в сетке в одном направлении:

n = b / S +1 = 1800 / 200 + 1 = 10 шт. Принимаем 10 шт.

Требуемая площадь сечения одного стержня:

Принимаем один стержень ∅8 S400, Ast = 50,3 мм 2 .

Такое же количество стержней укладывается в сетке в противоположном направлении.

3.2.5. Расчет монтажных петель

Вес фундамента определяем по его объему и объемному весу бетона, из которого он изготовлен.

Объем бетона на 1 стакан фундамента:

Вес стакана с учетом коэффициента динамичности kд = 1,4:

Усилие, приходящиеся на одну монтажную петлю:

N = 43942,8 / 2 = 21971,4 Н.

Определяем площадь поперечного сечения одной петли из арматуры класса S240, fyd = 218 МПа.

Принимаем петлю 1∅14 S240 As1 = 113,1 мм 2 .

Литература

1. СНБ 5.03.01–02. «Конструкции бетонные и железобетонные». – Мн.: Стройтехнорм, 2002 г. – 274с.

2. Нагрузки и воздействия: СНиП 2.01.07-85.–М.:1987.–36c.

3. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции:

Общий курс.– М.: Стройиздат , 1991.–767с.

4. Железобетонные конструкции. Основы теории расчета и конструирования // Учебное пособие для студентов строительной специальности. Под редакцией профессора Т.М. Петцольда и профессора В.В. Тура. – Брест, БГТУ, 2003.– 380с.

5. Строительные конструкции. Методические указания по выполнению курсового проекта специальность 2-70 02 01 «Промышленные и гражданские здания». Брест 2007 г.

Расчёт фундамента под колонну
Расчёт фундамента под колонну 3.1. Исходные данные Рассчитать и законструировать столбчатый сборный фундамент под колонну среднего ряда. Бетон класса С 20 / 25 , рабочая арматура класса

Источник: mydocx.ru

Расчет фундамента под колонну,

1. Данные для проектирования фундамента.

Усилия колонны у заделки в фундаменте:

Ввиду относительно малых значений эксцентриситета, фундамент колонны рассчитываем как центрально загруженный.

Усредненное значение коэффициента надежности по нагрузке ,

Нормативное значение нагрузки

Расчётное сопротивление грунта

Бетон тяжелый класса ,

Арматура класса A-II

Вес единицы объема бетона фундамента и грунта на его срезах

Высоту фундамента предварительно принимаем равной .

2. Определение размера сторон подошвы фундамента.

Площадь подошвы фундамента определяем предварительно без поправок на её ширину и заложение

Размер стороны квадратной подошвы

Принимаем (кратно 0,3м)

Давление на грунт от расчетной нагрузки

Рабочая высота фундамента из условий продавливания:

Полную высоту фундамента устанавливаем из условий:

2) заделки колонны в фундаменте:

3) анкеровки растянутой арматуры колонны Æ32 А III (d = 3,2 см)

Принимаем окончательно фундамент высотой (кратно 30 см), трёхступенчатый (2 верхних ступени по 30 см нижняя ступень 60 см). Глубина стакана толщина дна фундамента (120 – 85) = 35см ³ 20см. Для неармированного подколонника толщина стенки

Принимаем по конструктивным требованиям, с учётом призмы продавливания t = 22,5см.

Проверим, отвечает ли рабочая высота нижней ступени фундамента

условию прочности по поперечной силе без поперечного армирования в наклонном сечении, находящемся в сечении III–III. Для единицы длины этого сечения b = 100:

– условие прочности удовлетворяется.

3. Определение площади рабочей арматуры фундамента.

Расчетные изгибающие моменты колонны в сечениях I-I и II-II:

Площадь сечения арматуры:

Т.к. стороны фундамента больше 3 м, половину стержней принимаем длиной , где – размер длинных стержней.

В соответствии с конструктивными требованиями диаметр стержней принимаем не менее 12мм, шаг стержней S не менее 100мм и не более 200мм

Для удобства армирования принимаем две сетки с общей площадью стержней:

Расчет фундамента под колонну
Расчет фундамента под колонну, 1. Данные для проектирования фундамента . Усилия колонны у заделки в фундаменте: Ввиду относительно малых значений эксцентриситета, фундамент колонны

Источник: studopedia.su

Расчет фундамента под колонну

Сбор нагрузок под колонну

Делаем сбор нагрузок на фундамент под колонну в табличной форме.

Коэффициент надежности по нагрузке,

на единицу площади,

от грузовой площади, кН

От бетонного пола по перекрытию

Кратковременная на 1 м2 перекрытия (табл.3 /7/)

Расчет отдельно стоящего фундамента

Вертикальная нагрузка на уровне спланированной отметки земли N=251,58 кН, Nn=211,37 кН,

Условное расчетное сопротивление основания, сложенного гравийно-галечниковым грунтом, определяем по табл. 45/16/ кПа.

Вес единицы объема фундамента на его обрезах гmt=18 кН/м 3 .

Бетон тяжелый класса В 20, Rbt=0,9МП, Rb=11,5 МПа, гb2=1,

Арматура класса А-II, Rs=280 МПа.

Рис. 3.3. Заложение отдельно стоящего фундамента

Грунт под подошвой фундамента – песчано-гравийная смесь. Т.о., в соответствии с табл.2. СНиП 2.02.01-83, глубина заложения фундамента не зависит от .

Учитывая наличие подвала, принимаем глубину заложения фундамента, равную 3,3м.

Предварительные размеры фундамента

Предварительная площадь фундамента:

– суммарная расчетная нагрузка по обрезу фундамента, кН,

– расчетное сопротивление грунта основания, кПа,

– средний удельный вес грунта и материала фундамента, кН/м 3 ,

– глубина заложения фундамента, м.

Предварительная ширина фундамента:

где и -коэффициенты условий работы.

k-коэффициент, принимаемый равным 1,

-коэффициенты, принимаемые по табл. 4,

-коэффициент, принимаемый равным 1, т.к. b 10 м,

b-ширина подошвы фундамента, м,

-осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента кН/м 3 (тс/м 3 ),

-то же, залегающих выше подошвы,

-расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа (тс/м 2 ),

d1-глубина заложения фундаментов бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала

Размеры фундамента при R=608,02 кПа

Принимаем , исходя из конструктивных соображений.

Рис. 3.4. Конструирование отдельно стоящего фундамента

Вес грунта на обрезах фундамента

Среднее напряжение по подошве

Условия выполняются, размеры фундамента принимаются.

Расчет свайного фундамента

– глубина заложения ростверка

– принимаем глубину заложения 3,4 м, исходя из конструктивных соображений.

– за несущий слой принимаем песчано-гравийную смесь.

– длина сваи 3 м, сечение 30Ч30

Рис.3.5. Заложение свайного фундамента

Определение несущей способности сваи:

где – коэффициент условий работы сваи в грунте, принимаемый = 1,

R= 9295 кПа- расчетное сопротивление грунта под нижним концом сваи (Н =6,1 м), принимаемое по табл.1 СНиП 2.02.03-85,

при Н=5м, R=8800 кПа,

при Н=7м, R=9700 кПа,

– площадь опирания сваи на грунт, м 2 ,

– наружный периметр поперечного сечения сваи, м,

– расчетные сопротивления слоев грунта основания по боковой поверхности сваи, принимаемые по табл.2 СНиП 2.02.03-85,

hi – толщина i-го слоя грунта, соприкасающегося с боковой поверхностью сваи, м,

и – коэффициенты условий работы.

Допустимая нагрузка на сваю

где =1,4 – коэффициент надежности.

Несущая способность сваи по материалу:

Расчет продолжаем по наименьшей несущей способности

Среднее условное давление под подошвой:

Вес ростверка и грунта:

Требуемое количество свай:

Рис. 3.6. Конструирование ростверка

Вес грунта на обрезах

Нагрузка на сваю в ростверке

Следовательно, использование свайного фундамента является нецелесообразным, т. к даже при использовании минимального количества свай возникает значительное недонапряжение.

Исходя из этого, принимаем отдельно стоящий монолитный фундамент под колонну.

Расчет фундаментов под колонну
Расчет фундамента под колонну Сбор нагрузок под колонну Делаем сбор нагрузок на фундамент под колонну в табличной форме. Коэффициент надежности по нагрузке, на единицу площади, от

Источник: vuzlit.ru

Расчет столбчатого фундамента под колонну

Расчет фундамента выполняем под колонну среднего ряда, которая работает как центрально сжатый элемент. Фундамент под колонну среднего ряда считается как центрально-загруженный.

7.1.Расчет подошвы столбчатого фундамента.

Усилия от нормативной нагрузки определяются приблизительно, путём деления расчётных нагрузок на средний коэффициент надежности по нагрузке:

γн=1.15 – средний коэффициент надежности по нагрузке,

7.2.Глубина заложения фундамента

Глубина заложения фундамента d определяется с учетом:

– конструктивных особенностей сооружения,

– глубины заложения соседних фундаментов и прокладки коммуникаций,

– рельефа, характера напластования и свойств грунтов,

– глубины сезонного промерзания грунтов.

7.3.Определение глубины сезонного промерзания:

dfn=1,2 – нормативная глубина сезонного промерзания, м, кn=0,6 – коэффициент характеризующий параметры эксплуатации здания.

Глубина фундамента должна быть больше 0.9м. Принимаю глубину заложения фундамента 1,5 м. Защитный слой бетона принимаю равным a=3,5 см, так как будет производиться подготовка по грунту, толщиной слоя 10 см

7.4.Определение ширины подошвы фундамента.

расчётное сопротивление грунта (принимается по СНиП МПа – пески пылеватые маловлажные плотные).

глубина заложения фундамента. м.

удельный вес грунта на обрезок фундамента. кН/м 3 .

7.5.Длина стороны фундамента

При центрально-загруженном фундаменте принимаем квадратную форму основания фундамента. Длина стороны фундамента:

Принимаем фундамент: 1,6´1,6 м и Аф = 2,6 м 2

7.6.Давление на подошву грунта

Принимаем бетон В15 с прочностью на одноосное сжатие Rb = 8.7 МПа, нормативным сопротивление бетона при растяжении Rbt = 0.75 МПа и рабочую арматуру А-II с расчетным сопротивлением растяжению RS = 280 МПа.

7.7.Полезная минимальная высота фундамента определяется из условия продавливания его колонной при действии расчётной нагрузки:

7.8.Высота фундамента с учетом конструктивных требований

Конструктивно принимаю высоту ступенькиh1 = 20 см, h2 = 20 см

Конструктивно принимаю высоту ступенькиh1 = 20 см, h2 = 20 см.

Расчет столбчатого фундамента под колонну
Расчет столбчатого фундамента под колонну Расчет фундамента выполняем под колонну среднего ряда, которая работает как центрально сжатый элемент. Фундамент под колонну среднего ряда считается как

Источник: helpiks.org

6.1.5 Пример расчета фундаментов на естественном основании под колонны зданий и сооружений

Пример 6.1. Определить размеры и площадь сеченая арматуры внецентренно нагруженного фундамента со ступенчатой плитной частью и стаканным сопряжением с колонной размером сечения lс × bс = 400 × 400 мм. Глубина заделки колонны 0,75 м. Отметки: низа колонны — 0,90 м, обреза фундамента — 0,15 м, низа подошвы — 2,65 м. Размер подошвы 3,3 × 2,7 м.

Расчетные нагрузки на уровне обреза фундамента приведены в табл. 6.1.

ТАБЛИЦА 6.1. К ПРИМЕРУ 6.1

Примечание. Индексы обозначают, х — направление вдоль большого размера подошвы, у — то же, вдоль меньшего.

Материалы: сталь класса А-III, Rs = 360 МПа ( ø 6-8 мм), Rs = 375 МПа ( ø 10 мм), бетон тяжелый класса В10 (В15).

Расчетные сопротивления приняты со следующими коэффициентами условий работы: γb1 = 1, γb2 = 0,9, γb4 = 0,85.

Решение. 1. Назначение предварительных геометрических размеров фундамента (рис. 6.12). Определим необходимую толщину стенок стакана по сочетанию 3:

е = Mx/ N = 336/2100 = 0,16 м, т.е. е 0,2 lс = 0,2 · 0,4 = 0,08 м, но не менее 0,15 м. Тогда размеры подколонника luc = buc = 2 · 0,15 + 2 ·0,075 + 0,4 = 0,85 м. Принимаем с учетом рекомендуемого модуля 0,3 м.

Высоты ступеней плитной части hi = 0,3 м. Площадь подошвы фундамента A = 3,3 · 2,7 = 8,92 м 2 . Момент сопротивления в направлении большего размера

Wx = l 2 b /6 = 3,3 2 · 2,7/6 = 4,9 м 2 .

Рабочая высота плитной части h = 0,3 · 2 – 0,05 = 0,55 м. Глубина стакана hg = 0,75 + 0,05 = 0,8 м.

2. Расчет фундамента на продавливание. Расстояние от верха плитной части до низа колонны 1,05 м, в то время как huc = (luc – 1c) /2 = 0,25 м, следовательно, проверка на продавливание плитной части производится от низа подколонника.

Максимальное краевое давление на грунт (6.9):

pmax = 2100/8,92 + (336 + 72 · 2,4)/4,9 = 0,339 МПа.

Принимаем наибольшее значение pmax = 0,339 МПа. Продавливающая сила F = Аpmax .

Тогда F = 1,64 · 0,339 = 556 кН.

Задаемся классом бетона В10 с Rbt = 0,57 МПа. С учетом γb2 = 0,9 и γb4 = 0,85 Rbt = 0,57 · 0,9 · 0,85 = 0,436 МПа.

kRbtbph = 1 · 0,436 · 1,45 · 0,55 = 305 2 = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,85) – 0,25[2,7 – 0,9 – 2(0,85 – 0,3)] 2 = 0,85 м 2 ,

Несущая способность фундаментов по формуле (6.26)

F = 0,436 [(0,85 – 0,3)1,45 + 0,3 · 0,9] = 465 кН > 288 кН.

Принятый фундамент удовлетворяет условию прочности на продавливание

Рассмотрим дополнительно вариант при двухступенчатом фундаменте с высотой верхней ступени 0,45 м. Тогда (при h = 0,7 м):

A = 0,5 · 2,7(3,3 – 0,9 – 2 · 0,7) – 0,25(2,7 – 0,9 – 2 · 0,7)2 = 1,31 м 2 ,

F´ = 1,31 · 0,339 = 444,1 кН,

Несущая способность фундамента по формуле (6.1)

F = 1 · 0,436 · 1,6 · 0,7 = 488,3 кН > 444 кН,

т.е. и такой фундамент удовлетворяет прочности на продавливание.

Покажем, однако, что последний вариант менее экономичен. Действительно, объем плитной части высотой 0,9 м при трехступенчатом фундаменте

V3 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,3 + 1,5 · 0,9 · 0,3 = 4,37 м 3 , а при двухступенчатом фундаменте с учетом дополнительного объема подколонника на высоте 0,9 – 0,75 = 0,15 м

V2 = 3,3 · 2,7 · 0,3 + 2,4 · 1,8 · 0,45 + 0,9 · 0,9 · 0,15 = 4,74 м 3 > 4,37 м 3 .

Итак, принимаем трехступенчатый фундамент с высотой плитной части 0,9 м.

Проверим прочность нижней ступени при заданном ее выносе 450 мм и h01 = 0,25 м:

A = 0,5 · 2,7(3,3 – 2,4 – 2 · 0,25) – 0,25(2,7 – 1,8 – 2 · 0,25) 2 = 0,5 м 2 ,

P = 0,5 · 0,339 = 169 кН:

Несущая способность ступени F = 1 · 0,436 · 2,05 · 0,25 = 223 кН > 169,5 кН.

Размеры лежащих выше ступеней назначаются пересечением линии AB с линиями, ограничивающими высоты ступеней (рис. 6.13).

Определение площади сечений арматуры плитной части фундамента проведем на примере нижней арматуры (направленной вдоль большей стороны подошвы фундамента) класса А-II.

Расчетные усилия на уровне подошвы принимаем по сочетанию 3 без учета веса фундамента:

N = 2100 кН, M = 336 + 72 · 2,4 = 509 кН·м, еx = 509/2100 = 0,242 м.

Определим давление на грунт в расчетных сечениях (см. рис. 8.12)

Pmax = N/ A + M/ W = 2100/8,92 + 509/4,9 = 370 кН/м 2 ,

pII = 236 + 0,45 · 135 = 297 кН/м 2 .

pIII = 236 + 0,28 · 135 = 274 кН/м 2 .

Принимаем арматуру класса А-II с Rs = 285 МПа:

Сорочан Е.А. Основания, фундаменты и подземные сооружения

Расчет фундамента под колонну
6.1.5 Пример расчета фундаментов на естественном основании под колонны зданий и сооружений

Источник: xn--h3aleim.xn--p1ai

Расчет столбчатого фундамента под крайнюю колонну производственного корпуса

Из-за сложных инженерно-геологических условий площадки строительства расчет подошвы фундаментов производился из условия исключения отрыва подошвы при различных сочетаниях нагрузок.

По результатам инженерно-геологических изысканий, проведенных ООО «ПроектГеоком» в октябре 2013 года, основанием под подошвами фундаментов может служить песок мелкий (ИГЭ-3), средней плотности, малой степени водонасыщения.

Расчет производился на различные сочетания усилий, полученные при статическом расчета каркаса, при помощи программы «ФУНДАМЕНТ».

Программа «Фундамент» выполняет расчеты конструкций, работающих в грунте. Теории расчета взяты из соответствующих СНиПов, так же руководств и приложений к ним.

Таблица РСУ (выборочная)

Усилия

№ элем

№ сечен

N (т)

My (т*м)

Qz (т)

№№ загруж

1

1

-29.600

23.439

-4.534

1 2 3 4

1

1

-16.032

24.742

-4.657

1 4

1

1

-55.592

-20.192

3.056

1 2 5 6 9 10

1

1

-55.537

27.570

-4.606

1 2 3 4 6 8 10

8

1

-29.600

-23.439

4.534

1 2 3 5

8

1

-16.032

-24.742

4.657

1 5

Фундамент под крайние колонны

Тип фундамента — Столбчатый на естественном основании.

1. — Исходные данные:

Тип грунта в основании фундамента — Пески мелкие;

Тип расчета — Проверить заданный;

Способ расчета:

— Расчет основания по деформациям;

— Расчет по прочности грунтового основания;

Способ определения характеристик грунта — На основе непосредственных испытаний;

Конструктивная схема здания — Жёсткая при 2.5<(L/H)<4;

Фундамент Прямоугольный;

Наличие подвала — Нет;

Исходные данные для расчета kver=0.85:

Объемный вес грунта (G) 1.74 тс/м3

Угол внутреннего трения (Fi) 35 °

Удельное сцепление грунта (C) 0.2 тс/м2

Уровень грунтовых вод (Hv) -10 м

Высота фундамента (H) 2 м

Размеры подошвы фундамента b= 4 м, a= 2 м

Глубина заложения фундамента от уровня планировки (без подвала) (d) 2.6 м фундамент колонна деформация столбчатый

Усредненный коэффициент надежности по нагрузке 1.15

Расчетные нагрузки (по рсу1):

Наименование

Величина

Ед. измерения

Примечания

N

55.6

тс

My

27.6

тс*м

Qx

4.61

тс

Mx

0

тс*м

Qy

0

тс

q

3

тс/м2

2. — Выводы:

По расчету по деформациям коэффициент использования K= 0.19 (краевое давление)

По расчету прочности грунта основания коэффициент использования K= 0.07 при совокупном коэффициенте надежности Kn= 1.15

Расчетное сопротивление грунта основания 88.78 тс/м2

Максимальное напряжение в расчетном слое грунта в основном сочетании 19.99 тс/м2

Минимальное напряжение в расчетном слое грунта в основном сочетании 7.98 тс/м2

Результирующая вертикальная сила 128.64 тс

Сопротивление основания 1967.54 тс

Расчет по I предельному состоянию выполнен по пересчитанным характеристикам грунта (на kver=0.95) согласно «Пособия…» к СНиП 2.02.01-83*.

Расчетные моменты на уровне подошвы фундамента: Mx= 0 тс*м, My= 36.82 тс*м

Пример расчета столбчатого фундамента — Сваи Мания

Подробный пример расчета столбчатого фундамента

Перед тем как начать строить дом, нужно сначала провести все необходимые расчеты. Есть фундаменты, которые просчитываются достаточно легко — это плитные и ленточные, а есть более сложные варианты — столбчатые. У этих фундаментов есть одно неоспоримое преимущество — их можно дорабатывать (специальные подошвы и расширения), но это скорее исключение, чем правило.

Возвести столбчатый фундамент возможно не применяя грузоподъемную технику и спецтранспорт.

Основываются расчеты столбчатого фундамента сразу на нескольких факторах — масса дома и масса фундамента, а вот масса здания формируется из целого ряда показателей, часть из которых учитывается, а часть (при частном строительстве) можно смело отбросить. Для столбчатого фундамента совершенно не играет роли среднегодовая сила ветра и сейсмическая активность региона, потому что на маленький дом эти силы имеют минимальное воздействие, которое принимается за нуль.

Обратите внимание

Все основные факторы должны быть учтены максимально верно, чтобы в итоге не возникало неожиданностей.

Обычно столбчатый фундамент применяется в крайних случаях, поэтому для примера расчета можно использовать одноэтажный сруб из хвойных деревьев (дуб используется в XXI веке нечасто из-за несоразмерной дороговизны), с периметром 9×10 м и длиной простенков 15 м.
Расчет внешних и внутренних стен

Схема столбчатого фундамента.

У каждого строительного материала есть свои особенности, которые упрощают или усложняют работу. При расчете деревянных домов очень удобным фактором считается, что толщина у простенков и внешних стен разнится в два раза (внешние толще), что в значительной мере упрощает работу.

Разные типы древесины имеют различную массу, но средняя из расчета на 1 м² — 70-100 кг.

Эти числа при малогабаритном строительстве позволяют игнорировать тип древесины, потому что итоговый результат будет различаться крайне незначительно.

Единственный нюанс — это толщина стен, которая превосходит базовую в 2 раза (базовая составляет 15 см), то есть отсчет идет не от 70-100, а от 140-200 кг/м².

Малая масса деревянных стен обусловлена их природной физической легкостью. Такие стены не отвечают самым высоким физическим показателям, но с задачей удержания тепла справляются гораздо лучше бетонных. Единственное, что важно не забыть — это закрыть все отверстия паклей при выполнении работы.

Чтобы масса была идеально точной у сруба, нужно заранее знать точное количество стен и простенков, а также возможность их добавления в ходе эксплуатации. В данном случае добавочные простенки исключаются.
Расчет перекрытий цоколя и между этажами

Схема перекрытия цоколя.

Важно

Перекрытия рассчитываются проще всего, потому что подсчитать площадь дома несложно (длина помноженная на ширину), а дальше дело техники.

Но существует три вида перекрытий — плитные, деревянные и монолитные, причем плиты и дерево имеют свои подпункты.

В расчетах сруба нельзя использовать монолитные перекрытия, нежелательны и пустотные плиты между этажами. Таким образом, остаются всего три варианта:

  1. Перекрытие из дерева с легким утеплителем (200 кг/м³), чья масса у цоколя составляет 100-150 кг/м², а между этажами 70-100 кг/м².
  2. Перекрытие из дерева с тяжелым утеплителем (500 кг/м³), что масса у цоколя составляет 200-300 кг/м², а между этажами 150-200 кг/м².
  3. Железобетонные плиты, которые используются исключительно для организации цокольной части здания. Масса их много больше — 400 кг/м², но это оправдывается их выработкой.

При строительстве дома на столбчатом фундаменте оптимальным решением служат железобетонные плиты для цоколя — они идеально удерживают нагрузки, с которыми не справится даже ростверк.

У дерева в свою очередь есть свои преимущества — оно достаточно недорогое, а вместе с этим идеально защищает от температур снаружи дома. Единственный серьезный минус — это недолговечность. Если для основания используется не дуб, то даже столбчатый фундамент не спасет дерево от гниения (дерево приподнято над грунтом, что значительно оберегает его от влаги).
Какая кровля лучше?

Пример возведения кровли.

На этот вопрос нет однозначного ответа, но чаще всего на срубах можно углядеть натуральную кровлю, битумную черепицу, шифер и металл. Исключения встречаются, но не так уж часто, чтобы заострять на них внимание.

Массы можно распределить следующим образом в порядке возрастания:

  1. Битумная черепица легче всех своих собратьев, так как выделяется не только среди всех вариантов черепицы, но и среди синтетических аналогов — всего 8 кг/м². Интереснейший внешний вид и простота монтажа добавляют ей привлекательности. Есть у нее и два минуса — неустойчивость к резким перепадам температур, а также высокая цена. Именно цена обычно удерживает людей от ее приобретения.
  2. Натуральная кровля весит всего 15-20 кг/м². Это практически бесплатный кровельный материал, который надо регулярно заменять. Визуальный эффект зависит от рук мастера, но кровля почти всегда хорошо смотрится. Единственный минус — короткий срок эксплуатации.
  3. Металл. Непривычно видеть металл достаточно легким материалом, но 30 кг/м² доказывают, что такое возможно (для сравнения керамическая черепица в 4 раза тяжелее). Металл легко монтируется, долго служит и не пропускает воду, но есть и серьезный минус — никакой теплоизоляции, а звук при малейших ошибках монтажа только усиливается.
  4. Шифер из легких материалов оказался тяжелее всех — 50 кг/м². Его дешевизна и доступность в любом уголке планеты обязывает включить его в общий список. В советское время он получил широкое распространение, и технология его изготовления была отточена до высочайшего уровня.

При расчете к каждой стене прибавляется 1 м, поскольку кровля с каждой стороны дома выходит на 50 см.

На этом же этапе рассчитывается количество осадков, воздействующих на дом в связи с тем, что за площадь воздействия принимается площадь кровли. На юге показатели небольшие — 50 кг/м², на севере 200 кг/м², а в средней полосе России 100 кг/м². Эти данные можно использовать, как аксиому при строительстве зданий до 5 этажей.
Пример расчета столбчатого фундамента

Варианты столбчатого фундамента на пучинистом и непучинистом грунтах.

Перед тем, как проводить расчет диаметра столбчатого фундамента, нужно найти массу дома, массу ростверка, фундамента, а потом и площадь соприкосновения фундамента с почвой.

Первым делом высчитываются все внутренние и наружные стены дома, а также площадь соприкосновения их и столбчатого фундамента.

При подсчете внешних стен нужно помнить, что их толщина в 2 раза больше стандартной, а простенки равны ей. Т.о. выводится формула:

S=P×2×h+l×h, где P — это периметр дома, l — суммарная длина всех простенков дома, коэффициент 2 — отношение периметра к стандарту, h — высота стен. S=((9+10)×2)×2×2,7+15×2,7=205,2+40,5=245,7 м².

Есть и другие способы подсчета, но этот самый простой, к тому же погрешность с ним равноценна всем остальным вариантам.

Далее нужно вычислить площадь основания стен, что значительно проще.

Sосн=(P×2+l)×y, где за y принимается толщина стены.

Совет

Sосн=(38×2+15)×0,15=13,65 м² (лучше принять за 13, чтобы обеспечить в итоге более качественный столбчатый фундамент).

Для того чтобы найти массу деревянных стен, достаточно просто перемножить площадь на показатели массы на 1 м² (средние в данный момент). M=S×85=245,7×85=20884,5 кг.

Пример гидроизоляции и армирования столбов фундамента.

Перекрытия подсчитать гораздо проще. Для этого в качестве цоколя в пример пойдут железобетонные плиты, а под крышу деревянное межэтажное перекрытие с тяжелым утеплителем.

  • M=S×Mпер, где S — это площадь дома, а Mпер — масса перекрытия на 1 м²;
  • M1=S×Mплиты=9×10×400=36000 кг;
  • M2=S×Mдерева=9×10×175=15750 кг;
  • Mсум=M1+M2=36000+15750=51750 кг.

Подсчитать массу кровли тоже не составит труда, главное, не забывать про осадки с учетом холодного региона. Кровля будет указана из битумной черепицы:

  • Mкров=S×m=10×11×8=880 кг;
  • Mос=10×11×100=11000 кг;
  • Mсум=Mкров+Mос=11880 кг.

Для наглядности можно воспользоваться таблицей:

Вид стен Масса стен Масса перекрытий Масса кровли Сумма, кг
Кругляк 20884,5 51750 11880 84514,5

Важно хорошо закрепить ростверок на столбах фундамента, чтобы избежать вытек бетона.

Теперь можно начинать считать ростверк и фундамент
Ростверк высчитывается по суммарной длине стен без коэффициентов (ширина 0,5 м), а толщина его стандартная — 0,4 м. Масса раствора бетона у ростверка и фундамента принимается за 2400 кг/м³.

M=(P+l)×y×h×2400, где y — ширина фундамента, а h — его высота. M=(38+15)×0,5×0,4×2400=10,6×2400=25440 кг/м³.

Перед тем как проводить расчет диаметра столбчатого фундамента, нужно испробовать стандартный вариант в 0,3 м. Столбы ставятся с частотой 1 шт. на 1 м стены (ростверка). Глубина их залегания доходит до 1,6 м (глубина промерзания + 50 см), а высота над землей 0,4, что в сумме дает ровно 2 м.

При этом важно помнить, что самой меньшей устойчивостью к нагрузкам обладает песчаная поверхность — 20000 кг/м².

Пример расчета диаметра колонны выглядит следующим образом:

Опорная часть колонны составляет S=3,14×0,15×0,15=0,07 м², объем колонны V=S×h=0,07×2=0,14 м³.

Количество столбов lсум=P+l=38+15=53 м = 53 шт. Sсум=53×0,07=3,71 м².

Mсум=53×0,14×2400=17808 кг.

Итоговая масса = 17808+25440+84514,5=127762,5 кг.

Чтобы узнать, подходят ли выбранные параметры колонн к дому, нужно разделить массу дома на площадь опоры: 127762,5/3,71=34437,33.

Обратите внимание

Данные показатели почти в 1,5 раза превосходят положенную норму, из-за чего пример расчета диаметра особенно удачен, потому что придется увеличить объем столбов на 50% и одновременно на 25% увеличить их концентрацию.

При увеличении только объема увеличится вместе с этим и масса, а для компенсации массы можно использовать повышение количества столбов в процентном соотношении вдвое меньше увеличенного объема.

На этом этапе возможно использование подошвы, что избавит от необходимости увеличивать площадь и количество, но добавит необходимость полного выкапывания грунта для ее установки.

С учетом всех вышеизложенных формул и расчетов можно подсчитать не только сруб, но и любой другой дом, в который идут более сложные или простые материалы. Единственная разница, которая может возникнуть в вычислениях — вид фундамента.

Источник: https://moifundament.ru/raschet/primer-dlya-stolbchatogo-fundamenta.html

Расчет столбчатого фундамента. Как расчитать параметры столбчатого фундамента. Прочитав эту статью, вы сможете выполнить расчет столбчатого фундамента для своего дома

Прочное основание дома- залог того, что он простоит долго. Столбчатый фундамент хоть и является самым дешевым, но в случае его правильного проектирования он также будет надежной опорой. Как выполняется расчет столбчатого фундамента, изложено ниже.

Кратко о столбчатом фундаменте, его видах и особенностях

Столбчатый фундамент отличается от ленточного тем, что:

  • подходит для построек, относящихся к облегченному типу. К ним относятся деревянные  дома без подвального помещения, колонны и т.д.;
  • представляет собой ряд опор, находящихся в наиболее нагруженных точках.

Изготавливают столбчатый фундамент в основном 2 видов:

  1. Монолитный. Он имеет большую прочность, т.к. изготовлен из армированного бетона.
  2. Сборный – состоит из отдельных элементов, поэтому имеет слабые места там, где находятся швы. Преимущество его в скорости возведения.

Исходя из расчетных параметров фундамента этого вида, таких как глубина залегания подземных вод, уровень промерзания и тип грунта, существуют две разновидности столбчатого основания:

  1. Заглубленный ниже уровня промерзания, он так и называется – заглубленный. На глинистых почвах необходим только такой.
  2. Выполненный на глубине до 700 мм. Называется он малозаглубленным. Целесообразен на песчаных или скалистых грунтах.

Исходные данные для расчета

Для того чтобы приступить к выполнению расчета, вам потребуется следующая информация:

  • на какой глубине находятся грунтовые воды. При этом учитывается колебание этого параметра в разные периоды;
  • зимний температурный режим и сведения о том, насколько промерзает земля. Эти данные есть в справочниках;
  • к какому типу относится почва;
  • сколько приблизительно будет весить дом и все, что в нем находится;
  • масса самого столбчатого фундамента;
  • ветровые и снежные нагрузки.

Глубину промерзания земли в разных регионах страны можно увидеть на рисунке:

Самостоятельное определение типа грунта

Вряд ли кто-то захочет пойти в лабораторию и платить деньги за исследования, но такой параметр, как сопротивление почвы в зависимости от ее типа очень важен, поэтому определить его необходимо хотя бы самостоятельно. Руководствуемся следующим:

  1. Выкапываем яму глубиной ниже слоя промерзания.
  2. Берем оттуда немного земли, стараемся скатать ее в шар и смотрим, что получается:
  • из песчаного грунта скатать шар невозможно. То, что он действительно песчаный, определяется и визуально, но фракция может быть очень мелкой. Сопротивляемость такой почвы — R=2. Для песка средней и крупной фракций данный показатель составит 3 и 4,5 единиц соответственно;
  • если вам удалось сформировать шар, но при надавливании он тут же рассыпался – грунт супесчаный, а для него наименьшая сопротивляемость — R=3;
  • скатанная земля плотная. Сдавив шар, вы не увидите на нем трещин. Вывод: у вас в руках глина, значит, R=3-5;
  • в случае суглинка, шар также не распадется, но трещины при нажатии появятся. Для этого типа грунта R=2-4.

Расчет нагрузки на столбчатый фундамент в зависимости от веса надземной части дома

Расчет возможно выполнить тогда, когда вы уже определились:

  • с материалом, из которого будут возводиться стены;
  • с типом кровли;
  • с тем, какую мебель и бытовую технику разместите в доме.

Чтобы получить этот важный параметр, выполняем следующие действия:

  • суммируем нагрузки, создаваемые стенами, перегородками, элементами кровли и предметами внутри дома;
  • плюсуем к полученному результату нагрузку от веса снежного покрова. В разных местах этот показатель существенно отличается. Так, если на юге России он составляет всего 0,05 т на квадратный метр, то на севере удельный вес снега почти в 4 раза больше (0,190 т на 1 кв. м).

Расчет столбчатого фундамента, пример которого приведен ниже, выполнен для железобетонного монолитного типа. Возьмем такие исходные данные:

  • дом одноэтажный. Стены выполнены из конструкционно-теплоизоляционного газобетона блочного. Толщина стены 400 мм. Плотность D=600;
  • пол – сухой насыпной;
  • фундамент будет устраиваться на пластичном глинистом грунте;
  • крыша из черепицы керамической. Скат под углом в 45 градусов. Для устройства крыши использованы лаги деревянные;
  • наибольшая нагрузка придется на части здания большей длины, т.к. на них будут опираться лаги.

Столбчатый фундамент представляет собой стойку со следующими размерами:

  • верх имеет сечение 35х35 см;
  • основание или подошва – 75х75 см;
  • столбы расположены с интервалом в 2 м.

Нагрузка от снега

В расчете участвуют 2 параметра:

  • нормативная нагрузка, которую мы определяем по карте. Так как дом расположен в Подмосковье, то она равняется 126 кг на 1 кВ. м;
  • грузовая площадь крыши, приходящаяся на 1 м фундамента. При этом берем не весь фундамент, а только ту его часть, которая нагружена. Как видно из плана, длина этих участков в сумме составит 24 м. Для определения площади крыши нам потребуется вычислить результат от умножения 2 длин скатов на длину конька.

Итак, рассчитываем длину ската и площадь крыши:

  • 6:2 х cos450 = 3 х 0,707 = 4,3 м;
  • 2 х 4,3 х 12 = 103,2 м;
  • на 1 м фундамента будет давить вес кровли 103,2 : 24 = 4,3 кв. м.

Теперь мы сможем определить снеговую нагрузку:

4,3 х 126 = 541,8 кгс.

Нагрузка, создаваемая крышей

Порядок таков:

  • проекция кровли и площадь дома равнозначны, значит, площадь проекции равна 12 х 6 = 72 кв. м;
  • нагружены у нас только стороны по 12 м, поэтому нагрузка на фундамент от кровли распределена на длине 12 х 2 = 24 или на плоскости 24 х 0,4 = 9,6 кв. м;
  • из таблицы выше берем расчетную нагрузку для керамической черепицы, расположенной под углом в 45 градусов. Она равна 80 кгс на 1 кв. м;
  • итак, нагрузка на фундамент от кровли составит 72 : 9,6 х 80 = 600 кг на 1 кв. м.

 Как нагружают фундамент перекрытия

Эта нагрузка определяется просто:

  • вычисляем площадь перекрытия, а она идентична площади дома. 12 х 6 = 72 кв. м;
  • умножаем на удельный вес материала перекрытия. Данные для расчета возьмем из таблицы:
Перекрытие Плотность Кг/куб. м кПа Кгс/кВ. м
Дерево по деревянным балкам 200 1 100
-«-          -«-    -«-                  -«- 300 1,5 150
Дерево по балкам из стали 300 2 200
Железобетонные плиты серии ПК 5 100
  • нагрузка от кровли распределена на 2 стороны фундамента. Поэтому на 1 м основания дома приходится 72 : 24 = 3 кв. м;
  • теперь определяем нагрузку 3 х 300 = 900 кгс.

Нагрузка от стен

Чтобы рассчитать нагрузку, которую создают на фундамент стены дома, нам потребуются данные следующей таблицы:

умножаем:

  •  высоту стены на ее толщину и на нагрузку, создаваемую 1 кв. м;
  •  получаем значение, выражающее с какой силой стена давит на столбчатый фундамент 4 х 0,4 х 600 = 960 кгс.

Суммируем нагрузки

У нас уже есть все данные для расчета суммарной нагрузки на фундамент:

541,8 + 600 + 900 + 960 = 3001,8 кгс = 30 кН.

Определение предельных нагрузок фундамента на грунт

Выполняем следующие действия:

  • полученный результат умножаем на дистанцию между столбами 3002 х 2 = 6004 кгс;
  • так как плотность для железобетона составляет 2500 кг на 1 кв. м, то при объеме нашего столба 0,25 куб. м вес составит 0,25 х 2500 = 625 кгс;
  • один столб фундамента создает нагрузку на землю 6004 + 625 = 6629 кгс;
  • наш пластичный глинистый грунт имеет несущую способность 1,5 – 3,5 кгс на 1 кв. см. Берем минимальную. Значит, фундамент создаст максимальную нагрузку 1,5 х 6400 = 9600 кгс, где 6400 кв. см — площадь подошвы фундамента;
  • нагрузка, которую мы получили расчетным путем составляет 6629 кгс, следовательно, у выбранной нами основы дома большой запас прочности, позволяющий, если потребуется, добавить еще 1 этаж.

 Расчет столбчатого фундамента под колонну

При расчете фундамента под колонну, мы должны получить следующие данные:

  • какой высоты будет основание фундамента;
  • высота ступеней и их количество;
  • площадь поперечного сечения подколонника и стакана;
  • какого сечения арматура необходима;
  • все параметры анкерных болтов или закладных деталей.

Расчет этот сложный и ответственный, так что лучше, если его сделает профессионал. Для подсчета можно воспользоваться программой Project StudioCS Фундаменты. Эта программа, которую можно приобрести в Москве в Бизнес Центре «Гипромез»или заказать через интернет, позволяет:

  • при минимуме данных получить максимальное количество расчетных параметров;
  • рассчитать фундамент монолитный и сборный под колонны как одиночные, так и сдвоенные;
  • итоговая информация, содержащая характеристики и основные параметры, отображается в диалоговом окне.

Ее преимущества:

  • она сертифицирована;
  • функциональна и по качеству не уступает разработанным за рубежом;
  • значительно дешевле зарубежных аналогов;
  • при покупке программы к ней прилагается обучающее видео бесплатно.

Возможен расчет фундамента под колонну и в системе APM Civil Engineering.

На выходе выдает:

  • сведения о требуемом количестве арматуры;
  • о числе ступеней фундамента;
  • отображает геометрические размеры столбов;
  • учитывая нагрузку на основание, определит толщину продавливания грунта и т.д.

Ее достоинства:

  • полностью учитывает требования государственных строительных стандартов;
  • создает модели конструкций;
  • визуализирует, полученные путем вычисления, результаты;
  • благодаря наличию расчетных и графических инструментов, позволяет решать большой перечень задач, в том числе и расчет столбчатого фундамента под колонну.

А вот здесь видно наглядно, как выполняется расчет в системе APM Civil Engineering:

Расчет бетона для столбчатого фундамента

Допустим, что  известны такие параметры круглого столба как:

  • диаметр;
  • высота;
  • их количество.

Расчет бетона для столбчатого фундамента выполним так:

  • определим площадь его поперечного сечения, используя формулу S = 3.14 х R;
  • умножим площадь на высоту и получим объем бетона для одного столба;
  • умножим объем на общее число столбов и будем знать сколько всего бетона потребуется для устройства столбчатого фундамента.

Последовательность расчета фундамента популярно изложена в этом видео:

Источник: http://gid-str.ru/raschet-stolbchatogo-fundamenta

Пример расчета столбчатого фундамента

Возведение любого фундамента для жилого дома или другого строительного объекта требует точности, и поэтому необходимо проводить предварительный расчет столбчатого фундамента или основания другого типа.

Но, если с основными параметрами бетонной ленты или плиты все более или менее понятно, то как делать расчеты столбовых опор, многие строители не знают.

Поэтому рассмотрим расчет габаритов, несущей способности, материалов и других параметров именно для основания дома на столбах-опорах. Для этого необходим чертеж и/или проект фундамента:

Чертеж столбчатого основания

Калькулятор

Требования к фундаменту на столбах

Как строительная конструкция столбчатый фундамент выглядит как группа столбов из определенных стройматериалов, связанных между собой ростверком.

Ростверк — это горизонтальная обвязочная конструкция, предназначенная для усиления основания и объединяющая разрозненные конструкции, в данном случае – столбы фундамента.

Устойчивость столбовых опор обеспечивается погружением их в грунт на расчетную глубину, которая зависит от массы здания и свойств грунта.

Нагрузочные характеристики тем выше, чем больше точек опирания на почву, и чем выше поверхностное трение опор. Проще говоря, диаметр опор должен быть достаточно большим, глубина погружения столбов и количество опор должно обеспечивать достижение оптимальной нагрузки на каждую опору при распределении нагрузок при помощи ростверка.

Неглубокое заложение столбчатых опор разрешается для каркасного дома, для малоэтажных, легких и небольших по площади зданий из пиломатериалов, ячеистых бетонов, а также для модульных конструкций.

Кирпичные, бетонные или панельные дома на столбчатом фундаменте построить невозможно, так как удельный вес стен строения должен быть ≤ 1000 кг/м3.

Важно

Столбчатые опоры делают из различных стройматериалов – они могут быть металлические из полых труб, кирпичные, блочные, бетонные или железобетонные, бутобетонные, из асбоцементных или бетонных труб, залитых бетоном, и т.д.

Незаглубленно

Добавить комментарий

Ваш адрес email не будет опубликован.