Применение теплопроводности в строительстве – Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Содержание

Значение теплопроводности в строительстве — Информио

В холодную, дождливую, ветреную погоду мы всегда стремимся вернуться в теплый дом, где можно, сняв пальто, почувствовать себя в тепле и уюте. Наружные стены, окна, крыша (т.е. ограждающие конструкции) защищают наш дом от низких температур, сильного ветра, осадков в виде дождя и снега и других атмосферных воздействий. При этом они препятствуют прониканию тепла из внутреннего помещения наружу вследствие своего сопротивления теплопередаче. В зависимости от толщины материала конструкция может иметь различное сопротивление теплопередаче: чем больше толщина материала, тем лучшими теплозащитными свойствами обладает ограждение.

 

Тепло может передаваться разными способами: теплопроводностью, конвекцией, излучением.

 

В чистом виде теплопроводность наблюдается только в сплошных твердых телах. Тепло передается непосредственно через материал или от одного материала другому при их соприкосновении. Высокой теплопроводностью обладают плотные материалы — металл, железобетон, мрамор. Воздух имеет низкую теплопроводность. Поэтому через материалы с большим количеством замкнутых пор, заполненных воздухом, тепло передается плохо, и они могут использоваться как теплоизоляционные (семищелевой кирпич, пенобетон, вспененный полиуретан, пенопласт).

 

Конвекция характерна для жидких и газообразных сред, где перенос тепла происходит в результате движения молекул. Конвективный теплообмен наблюдается у поверхности стен при наличии температурного перепада между конструкцией и соприкасающимся с ней воздухом. В окнах жилых домов конвективный теплообмен происходит между поверхностями остекления, обращенными внутрь воздушной прослойки. Нагреваясь от внутреннего стекла, теплый воздух поднимается вверх. При соприкосновении с холодным наружным стеклом воздух отдает свое тепло и, охлаждаясь, опускается вниз. Такая циркуляция воздуха в воздушной прослойке обусловливает конвективный теплообмен. Чем больше разность температур поверхностей, тем интенсивнее теплообмен между ними.

 

Излучение происходит в газообразной среде путем передачи тепла с поверхности тела через пространство (в виде энергии электромагнитных волн). Благодаря лучистому теплообмену поверхность Земли обогревается Солнцем, находящимся от нее на расстоянии многих световых лет.

 

Аналогичным образом осуществляется передача тепла излучением между двумя поверхностями, расположенными в стене и разделенными воздушной прослойкой. Нагретая поверхность радиатора излучает тепло и обогревает помещение. Чем выше температура поверхности отопительного прибора, тем сильнее обогревается помещение.

 

Все тела, имеющие температуру выше абсолютного нуля, излучают тепло, которое частично отражается, частично поглощается. Если вся падающая на тело лучистая энергия отражается, то такое тело называется абсолютно белым. Если вся падающая энергия поглощается, то тело называется абсолютно черным.

 

Строительные материалы также частично отражают и частично поглощают энергию, хотя и в меньшей степени, чем абсолютное белое и абсолютно черное тела. Они называются серыми телами.

 

Светлая и гладкая поверхность отражает большую часть падающей энергии. Чем темнее и шершавее поверхность тела, тем больше энергии она поглощает. Поглощенная телом лучистая энергия превращается в тепловую и вызывает повышение температуры. Поэтому для уменьшения перегрева помещений верхнего этажа в летнее время целесообразно покрытие крыши делать из оцинкованной кровельной стали, а не из рубероида. Благодаря блестящей светлой поверхности сталь отражает значительную часть излучения и нагревается меньше, чем рубероид, имеющий темную поверхность и интенсивнее поглощающий лучистую энергию.

 

Утеплять помещения идеальнее всего на стадии его строительства.


Рисунок 1  — Приведенное сопротивление теплопередачи для различных конструкций стен.

 

Теплопроводность строительных материалов – это возможность через свою толщу проводить тепловой поток от одной поверхности к другой.Но это свойство действует лишь в том случае, если в изделии есть градиент потенциала переноса. Если мы имеем дело с пористыми веществами, на теплопроводность влияет характер пор, показатель пористости, вид вещественного состава изделия, температура и влажность.

 

Стоит отметить что у плотных материалов  теплопроводность выше,  чем у пористых, дело в том, что у последних тепловой поток может идти не только через поры, заполненные воздухом, но и через вещество изделия. Тепловой поток получает сопротивление из-за низкой теплопроводности воздуха. Но чем меньше размер пор, тем меньшую теплопроводность можно отметить у пористых материалов. А если присутствуют сообщающиеся большие поры, можно говорить об увеличении переноса теплоты движением воздуха. Таким образом, изделия, где есть сообщающиеся поры – отличаются большей теплопроводностью.

 

Некоторые нюансы вносит структура материалов и условия их теплопроводности. В частности, если при строительстве замечено увлажнение, в таком случае резко увеличивается теплопроводность изделий. Дело в том, что тепловой поток проходит быстрее и лучше, если поры заполнены водой.

 

Кроме того, особое влияние на теплопроводность оказывает структура материалов. Неодинаковые свойства у изделий со слоистым и волокнистым строением. К примеру, теплопроводность пола из деревянной торцовой шашки выше подобного образца из щитового и дощатого паркетного пола. Это объясняется тем, что у древесных материалов термическое сопротивление поперек вдвое больше, чем при направлении теплового потока вдоль волокон. Такие особенности зафиксированы и при работе со слоистыми искусственными изделиями.

 

Сейчас на рынке почти каждый день появляются все новые и новые виды утеплителей. Каждый из них обладает своими преимуществами и недостатками.  Но, из самых популярных очень сложно выбрать нужный, потому что при сравнении выясняется, что один лучше другого. На самом деле универсального утеплителя не существует, и для каждой утепляемой части дома – стены, крыша, пол и так далее – нужно подбирать свой тип.

 

Выбор теплоизоляционных материалов (ТИМ), хороших для каждой конструкции дома, задачка не из легких: за последнее десятилетие на рынке их появилось неописуемое огромное количество.

 

Хорошо утеплить собственный дом можно только при всеохватывающем подходе к термоизоляции.Всеохватывающее утепление дома позволяет: уменьшить толщину ограждающих конструкций, повысить их теплоизоляционные свойства, понизить массу сооружений и расход стройматериалов, а в эксплуатационный период существенно уменьшить издержки на энергию при отоплении построек.

 

Строители подсчитали, что больше половины всего тепла из дома уходит через стенки и окна, при этом, чем больше площадь наружных поверхностей, тем выше будут теплоотдачи. Один из методов минимизировать их знаком всем дачникам: пристройка к дому веранды и других подсобных помещений. В прохладное время года они делают функцию буфера, защищающего внутренние комнаты от внешнего воздуха. Самое проблемное место в доме, исходя из убеждений теплопотерь это окна. Потому нужно верно избрать тип оконного блока и детали его установки, также направить внимание на сопряжение окон со стенками, толщину оконной коробки, размещение окна в плоскости стенки. Чтоб минимизировать утраты, можно установить окна с трехслойным остеклением в спаренных древесных рамах.

 

Фасад строения можно утеплить 3-мя методами: изнутри, снаружи и утеплением внутри стенки. Предпочтение, обычно, отдается системам внешнего утепления. Это, во-1-х, позволяет сохранить полезную площадь помещений, а, во-2-х, не заниматься устройством пароизоляции и воздушных зазоров, препятствующих конденсации пара. В качестве ТИМ для фасадного утепления можно с фурором использовать минеральную вату, стекловолокно, изделия из полистирола и др.

 

Такой метод утепления не только защитит дом от воздействий наружной среды и уменьшит эксплуатационные издержки на отопление, но и сделает лучше звукоизоляционные характеристики дома, также облагородит его внешний облик.

 

Не забывайте, что показатели теплопроводности очень важны при строительстве зданий. Ведь от грамотного изучения технических характеристик материалов зависят будущие расходы на отопление дома.

 

Библиографический список

  1. Физика: Учебник для студ. образоват. учреждений сред. проф. образования / В.Ф. Дмитриева.- 6-е изд., стер. – М.: Издательский центр «Академия», 2005.
  2. Строительные материалы и изделия: учебник для студ. учреждений сред. проф. образования /Ю.Г. Барабанщиков. – 2-е изд., стер. — М.: Издательский центр «Академия», 2010.
  3. Технология и организация строительства: Г.К. Соколов. – 7-е изд., стер. — М.: Издательский центр «Академия», 2010.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

  • Понятие теплопроводности
  • Теплопроводность при строительстве

Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

Иржи Зак, Станислав Стастник Институт технологии строительных материалов и компонентов, Технологический университет Брно, факультет гражданского строительства, Брно, Чешская Республика. Нестационарное измерительное оборудование означает прогресс в методах простого, надежного и быстрого определения теплопроводности строительных материалов. В настоящем документе описывается новый метод определения коэффициента теплопроводности строительных материалов, включая все задействованные процедуры, и оценивается преимущества, связанные с использованием этого метода.

Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Коэффициент теплопроводности является наиболее важным теплотехническим свойством строительных материалов — он характеризует способность материалов проводить тепловую энергию. На практике используются две группы методов испытаний для измерения теплопроводности как свойства материалов.

Принцип плоского источника тепла

Эти методы достаточно точны, но они отнимают много времени, и применение этого метода возможно только в случае образцов с точно определенными размерами, и они очень требовательны к подготовке образца. Нестационарные методы — ударные методы с использованием вторичных измерительных приборов. Стационарные методы. . Для расчетов теплопередачи от плоского источника тепла мы исходим из приложения фундаментального уравнения Фурье для теплопроводности в виде.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Принцип нестационарного плоского измерительного оборудования

Зонд нестационарного измерительного прибора образует полуограниченную область с известными параметрами и термически чувствительную границу с плоским источником тепла на ее поверхности. В принципе этот метод основан на ударном «методе горячей проволоки», но в отличие от этого метода заменяет линейный источник тепла плоским источником тепла, который гарантирует приближение измеренной величины по всей поверхности испытательного зонда и исключает возможный эффект локальных неоднородностей материала.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Температура находится на измеренной границе, контролируемой с помощью контрольной термопары. Измеренные значения здесь хранятся и оцениваются. Выход источника тепла контролируется с помощью программного обеспечения для обеспечения оптимальной тепловой защиты на границе между зондом и испытанным материалом по теплотехническим параметрам испытуемого образца.

При оценке результатов измерений коэффициента теплопроводности нестационарным плоским измерительным оборудованием с использованием сравнительного метода мы обычно предполагаем сходство температурного курса при регулярном нагревании материалов. Следующий график формулирует типичный температурный курс при регулярном нагревании.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Вернуться к оглавлению

Факторы, влияющие на величину теплопроводности

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

В начале измерения принимается начальное стационарное состояние температуры. Измерительный датчик и образец образуют две полубесконечные области. Линейная часть кривой параметризуется используемой емкостью плоского источника и теплоизоляционными свойствами обоих смежных полупространств.

В общем случае расчет значения теплопроводности может быть выражен уравнением. Во время практических измерений результаты измерений на эталонных материалах были применены для выбора оптимального интервала измерения и оптимальной выходной мощности источника тепла в отношении максимизации результатов измерений точно и воспроизводимости.

  1. Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

Определение коэффициента теплопроводности строительных материалов с использованием нестационарного плоского измерительного оборудования. Нестационарное плоское измерительное оборудование благодаря своей конструкции обладает многими выгодными свойствами. В этом аппарате можно легко и быстро измерить значение коэффициента теплопроводности в случае любого строительного материала.

Само измерение длится всего несколько секунд, и поэтому можно определить значение коэффициента теплопроводности в зависимости от влажности испытуемого образца. Плоский датчик обеспечивает возможность определения коэффициента теплопроводности значительно неоднородных материалов. Требования, касающиеся размера выборки, по сравнению с другими методами существенно меньше. По этим причинам можно определить коэффициент теплопроводности даже в части строительных изделий, поскольку со стандартными образцами тепловые технические свойства могут сильно отличаться от свойств конечных продуктов. Точность измерения. Как и в случае любого метода измерения, даже в случае нестационарного плоского измерительного п

Таблица теплопроводности строительных материалов: коэффициенты

ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

  1. Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
  2. Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
  3. Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.

Теплопроводность, плотность и водопоглощение некоторых строительных материалов

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Теплопроводность готового здания. Варианты утепления конструкций

При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

  • стены – 30%;
  • крышу – 30%;
  • двери и окна – 20%;
  • полы – 10%.

Теплопотери неутепленного частного дома

При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.

Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  1. Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  2. Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.

Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

Таблица теплопроводности строительных материалов: коэффициенты

В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

Таблица коэффициента теплопроводности строительных материалов:

Таблица теплопроводности строительных материалов: коэффициенты

Теплопроводность строительных материалов (видео)

ОЦЕНИТЕ
МАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ

СМОТРИТЕ ТАКЖЕ

REMOO В ВАШЕЙ ПОЧТЕ

Таблица теплопроводности строительных материалов, рекомендации

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Таблица теплопроводности строительных материаловЧем ниже теплопроводность строительных материалов, тем теплее в доме

Содержание статьи

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

ИСТ-1 – прибор для определения теплопроводностиИСТ-1 – прибор для определения теплопроводности

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

  1. Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

    Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизоляторомЗамкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

  2. Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

    Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностьюВысокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  3. Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
«Холодно, холодно и сыро. Не пойму, что же в нас остыло...» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1 Таблица коэффициентов теплоотдачи материалов. Часть 1Проводимость тепла материалов. Часть 2Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных половТаблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичейТеплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПроводимость тепла дереваПрочность разных пород древесиныПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материаловСравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

Таблица проводимости тепла воздушных прослоекТаблица проводимости тепла воздушных прослоек

Калькулятор расчёта толщины стены по теплопроводности

На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

Окно расчёта калькулятораОкно расчёта калькулятора

В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном раствореРасчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

Расчёт проводимости тепла всех прослоек стенРасчёт проводимости тепла всех прослоек стен

Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

 

Предыдущая

Строительные материалыИз чего делают цемент: от теории к практике

Следующая

Строительные материалыКрепкий пол в каждый дом: ламинат или линолеум — что лучше

Понравилась статья? Сохраните, чтобы не потерять!

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Сравнительная таблица теплопроводности современных строительных материалов

Оглавление:
  • Понятие теплопроводности
  • Факторы, влияющие на величину теплопроводности
  • Практическое применение значения теплопроводности строительных материалов
  • Теплопроводность материалов: параметры
  • Теплопроводность при строительстве

Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.

Схема теплопроводности и толщины материалов.

Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.

Понятие теплопроводности

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Коэффициент теплопроводности кирпичей.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.

Вернуться к оглавлению

Факторы, влияющие на величину теплопроводности

Теплопроводность материалов, используемых в строительстве, зависит от их параметров:

Зависимость теплопроводности газобетона от плотности.

  1. Пористость наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1+b*t), (1)

где, λо коэффициент теплопроводности при температуре 0 °С, Вт/м*°С,

b справочная величина температурного коэффициента,

t температура.

Вернуться к оглавлению

Практическое применение значения теплопроводности строительных материалов

Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление нормируемая величина.

Упрощенная формула, определяющая толщину слоя, будет иметь вид:

Таблица теплопроводности утеплителей.

H=R/λ, (2)

где, H толщина слоя, м,

R сопротивление теплопередаче, (м2*°С)/Вт,

λ коэффициент теплопроводности, Вт/(м*°С).

Данная формула применительно к стене или перекрытию имеет следующие допущения:

  • ограждающая конструкция имеет однородное монолитное строение,
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 Строительная климатология,
  • СНиП 23-02-2003 Тепловая защита зданий,
  • СП 23-101-2004 Проектирование тепловой защиты зданий.
Вернуться к оглавлению

Теплопроводность материалов: параметры

Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.

Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

Значения коэффициентов теплопроводности сведены в таблицу 1:

Таблица 1

Материал Коэффициент теплопроводности, Вт/(м*°С). Пенобетон (0,08 0,29) в зависимости от плотности Древесина ели и сосны (0,1 0,15) поперек волокон
0,18 вдоль волокон Керамзитобетон (0,14-0,66) в зависимости от плотности Кирпич керамический пустотелый 0,35 0,41 Кирпич красный глиняный 0,56 Кирпич силикатный 0,7 Железобетон 1,29

Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.

Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

Вернуться к оглавлению

Теплопроводность при строительстве

Схема сравнения теплопроводности стен из газобетона и кирпича.

При проектировании и производстве строительных работ необходимо учитывать возможные пути теплопотерь:

  • 30-40% потерь тепла приходится на поверхность стен,
  • 20-30% через межэтажные перекрытия и крышу,
  • около 20% потерь приходится на поверхность, занимаемую оконными и дверными проемами,
  • приблизительно 10% тепла уходит из помещения через плохо утепленные полы.

Важным фактором при учете теплопроводности в строительстве является обеспечение надлежащей ветро- и пароизоляции. В наибольшей степени это справедливо для пористых утеплителей. Т.е. при ограничении доступа влаги внутрь конструкций (как извне, так и снаружи) сопротивление теплопередачи будет выше. Утеплитель будет более эффективно работать, соответственно, потребуется меньшая толщина конструкций.

В идеале стены и перекрытия должны выполняться из теплоизоляционных материалов. Однако они обладают низкой конструкционной прочностью, что ограничивает широту их применения. Возникает необходимость выполнять основные несущие конструкции из кирпича, дерева, пенобетонных блоков и т.п.

Наиболее распространенным вариантом конструкций домов, встречающимся на практике, является комбинация несущей конструкции и теплоизоляции.

Здесь можно различить:

Сравнение теплопроводности соломобетонных блоков с другими материалами.

  1. Каркасный вариант строительства основной каркас, обеспечивающий пространственную жесткость, выполняется из деревянных досок или брусьев. Утеплитель укладывается в межстоечное пространство. В некоторых случаях для достижения требуемых показателей по энергоэффективности осуществляется дополнительное утепление снаружи каркаса.
  2. Возведение стен дома из кирпича, пористых бетонных блоков, дерева утепление осуществляется по наружной поверхности. Слой утеплителя компенсирует избыточную теплопроводность основного стенового материала. С другой стороны материал основной стены несет на себе нагрузки, компенсируя малую механическую прочность утеплителя.

Аналогичные закономерности будут справедливы при возведении межэтажных перекрытий и кровельных конструкций.

Таким образом, используя комбинацию материалов с требуемыми значениями коэффициентов теплопроводности, можно получить оптимальные по свойствам и толщине ограждающие конструкции здания.


Теплопроводность материалов в строительстве и отделке жилых зданий

При изучении свойств любых строительных материалов особое внимание следует уделять такому значению, как его теплопроводность, поскольку от этого напрямую будет зависеть способность жилого здания удерживать тепло внутри, а также препятствовать его проникновению снаружи. Теплопроводность материалов представляет собой способность проводить тепловой поток сквозь сам материал от одной поверхности к другой, что обуславливается наличием в нем градиента потенциала переноса. Абсолютно все материалы имеют определенный коэффициент этого показателя, зная который, можно самостоятельно определить, подходит ли данный материал для тех или иных целей.

Самой высокой теплопроводностью обладают металлические изделия, которые практически не способны накапливать тепло. В зимний период времени они замерзают, а летом нагреваются до очень высокой температуры, полностью завися от состояния окружающей среды. В связи с этим нужно понимать, что теплопроводность материалов такого типа следует в обязательном порядке учитывать при возведении жилого здания.

Если не считать окон и дверей, то основным источником проникновения холода являются наружные стены здания, поэтому при постройке этому следует уделить очень большое внимание. Основным строительным материалом в нашей стране традиционно считается красный кирпич, теплоемкость которого составляет 0,92 кДж/кг*К.

Однако в последнее время большую популярность стал набирать пенобетон, который представлен на рынке стройматериалов пенобетонными и газобетонными блоками. Следует знать, что теплопроводность материалов зависит от показателей его пористости, структуры, температуры и влажности, при которых протекает теплоотдача. Благодаря специальной автоклавной технологии, пенобетон получает как раз такую внутреннюю структуру, которая препятствует проникновению холода, поэтому сегодня его все чаще можно увидеть на строительных площадках.

Помимо этого, требования к нормам утепления жилых зданий и сооружений постоянно повышаются, поскольку это позволяет оптимизировать температурный режим, а также существенно снизить энергозатраты на отопление. В связи с этим, одними из наиболее востребованных стали утеплители, поскольку теплопроводность материалов такого типа позволяет максимально защитить здание от низких температур внешней среды. Широкий ассортимент этой продукции включает в себя пенофол, минеральную вату, камку, пенопласт и пенополистирол. Помимо этого, совсем недавно в продаже появились специальные «теплые штукатурки», которые позволяют обеспечить надежную теплозащиту абсолютно любого здания. Единственным недостатком этого нового материала является его высокая цена, что значительно сдерживает его распространение.

Наиболее популярным и доступным утеплителем является пенопласт, теплопроводность которого составляет в сухом состоянии от 0,042 до 0,037 Вт/м.*К, что также зависит от плотности пенопласта (М15, М25, М35). Он обладает отличными характеристиками, к которым относится легкость, низкая теплопроводность и водопоглощение, отсутствие вредного воздействия на окружающую среду (при оштукатуривании, поскольку при открытом попадании ультрафиолетовых лучей он может выделять вредные вещества фенолы), а также невысокая цена. Все это позволяет работать с таким материалом очень легко, и даже самостоятельно производить работы по утеплению фасада своего дома.

Подводя итоги выему вышеизложенному, следует еще раз подчеркнуть, что теплопроводность строительных материалов является важнейшей характеристикой, на которую следует в обязательном порядке обратить внимание грамотным застройщикам при возведении своего дома, а также всем хозяевам при выполнении работ по утеплению существующего строения.

Теплопроводность строительных материалов и коэффициенты теплопотерь

Из чего построить дом? Его стены должны обеспечить здоровый микроклимат без лишней влаги, плесени, холода. Это зависит от их физических свойств: плотности, водостойкости, пористости. Самым главным является теплопроводность строительных материалов, означающая их свойство пропускать сквозь себя тепловую энергию при разнице температур. Для того, чтобы количественно оценить этот параметр, используют коэффициент теплопроводности.

Для того, чтобы кирпичный дом был таким же теплым, как и деревянный сруб (из сосны), толщина его стен должна втрое превышать толщину стен сруба.

Что такое коэффициент теплопроводности

Эта физическая величина равна количеству теплоты (измеряемой в килокалориях), проходящей через материал толщиной 1 м за 1 час. При этом разница температур на противоположных сторонах его поверхности должна быть равной 1 °С. Исчисляется теплопроводность в Вт/м град (Ватт, деленный на произведение метра и градуса).

Использование данной характеристики продиктовано необходимостью грамотного подбора типа фасада для создания максимальной теплоизоляции. Это необходимое условие для комфорта живущих или работающих в здании людей. Также теплопроводность строительных материалов учитывается при выборе дополнительного утепления дома. В данном случае ее расчет особенно важен, так как ошибки приводят к неправильному смещению точки росы и, как следствие — стены мокнут, в доме сыро и холодно.

Сравнительная характеристика теплопроводности строительных материалов

Коэффициент теплопроводности материалов различный. К примеру, у сосны этот показатель равен 0,17 Вт/м град, у пенобетона – 0,18 Вт/м град: то есть, по способности сохранять тепло они примерно идентичны. Коэффициент теплопроводности кирпича – 0,55 Вт/м град, а обыкновенного (полнотелого) – 0,8 Вт/м град. Из всего этого следует, что для того, чтобы кирпичный дом был таким же теплым, как и деревянный сруб (из сосны), толщина его стен должна втрое превышать толщину стен сруба.

Практическое использование материалов с низкой теплопроводностью

Современные технологии производства теплоизолирующих материалов предоставляют широкие возможности для строительной индустрии. Сегодня совершенно не обязательно строить дома с большой толщиной стен: можно удачно комбинировать различные материалы для возведения энергоэффективных построек. Не очень высокую теплопроводность кирпича можно компенсировать использованием дополнительного внутреннего или наружного утеплителя, например, пенополистирола, коэффициент теплопроводности которого – всего 0,03 Вт/м град.

Взамен дорогих домов из кирпича и не эффективных с точки зрения энергосбережения монолитных и каркасно-панельных домов из тяжелого и плотного бетона сегодня строят здания из ячеистого бетона. Его параметры такие же, как у древесины: в доме из данного материала стены не промерзают даже в самые холодные зимы.

Потери тепла дома в процентном соотношении.

Такая технология позволяет возводить более дешевые здания. Это связано с тем, что низкий коэффициент теплопроводности строительных материалов упростил возведение минимальными затратами по финансированию. Уменьшается также и время, затрачиваемое на строительные работы. Для более легких сооружений не требуется устраивать тяжелый глубоко заглубленный фундамент: в ряде случаев достаточно легкого ленточного или столбчатого.

Особенно привлекательным данный принцип строительства стал для возведения легких каркасных домов. Сегодня с использованием материалов низкой теплопроводности возводится все больше коттеджей, супермаркетов, складских помещений и производственных зданий. Такие строения могут эксплуатироваться в любой климатической зоне.

Принцип каркасно-щитовой технологии строительства заключается в том, что между тонкими листами фанеры или плит OSB помещается теплоизолятор. Это может быть минеральная вата либо пенополистирол. Толщина материала выбирается с учетом его теплопроводности. Тонкие стены вполне справляются с задачей тепловой изоляции. Таким же образом устраивается кровля. Данная технология позволяет в короткие сроки возводить здание с минимальными финансовыми затратами.

Сравнение параметров популярных материалов для изоляции и возведения домов

Пенополистирол и минеральная вата заняли лидирующие позиции при утеплении фасадов. Мнения специалистов разделились: одни утверждают, что вата накапливает конденсат и пригодна к эксплуатации лишь при одновременном использовании с паронепроницаемой мембраной. Но тогда стены теряют дышащие свойства, и качественное применение оказывается под вопросом. Другие уверяют, что создание вентилируемых фасадов решает данную проблему. При этом пенополистирол имеет низкую проводимость тепла и хорошо дышит. У него она пропорционально зависит от плотности листов: 40/100/150 кг/м3 = 0,03/0,04/0,05 Вт/м*ºC.

Еще одна важная характеристика, которую обязательно учитывают при строительстве — паропроницаемость. Она означает возможность стен пропускать изнутри влажность. При этом не происходят потери комнатной температуры и нет необходимости проветривать помещение. Низкая теплопроводность и высокая паропроницаемость стен обеспечивают идеальный для проживания человека микроклимат в доме.

Исходя из этих условий, можно определить самые эффективные дома для проживания человека. Наиболее низкой проводимостью тепла обладает пенобетон (0,08 Вт
м*ºC) при плотности 300 кг/м3. Этот строительный материал имеет также одну из самых высоких степеней паропроницаемости (0,26 Мг/м*ч*Па). Второе место по праву занимает древесина, в частности — сосна, ель, дуб. Их теплопроводность достаточно низкая (0,09 Вт/м*ºC) при условии обработки дерева поперек волокон. А паропроницаемость этих сортов наиболее высокая (0,32 Мг/м*ч*Па). Для сравнения: использование сосны, обработанной вдоль волокон, повышает выпуск тепла до 0,17-0,23 Вт/м*ºC.

Таким образом, для возведения стен подходят лучше всего пенобетон и древесина, так как они обладают лучшими параметрами по обеспечению экологической чистоты и хорошего микроклимата внутри помещений. Для изоляции фасада подходят пенополиуретан, пенополистирол, минеральная вата. Отдельно следует сказать о пакле. Ее закладывают для исключения мостиков холода во время кладки сруба. Она увеличивает и без того отличные свойства деревянного фасада: коэффициент проводимости тепла у пакли самый низкий (0,05 Вт/м*ºC), а паропроницаемость самая высокая (0,49 Мг/м*ч*Па).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *