Площадь обозначается буквой – Как обозначается площадь: какой буквой или знаком пишется параметр площади в математике

Содержание

Площадь — Википедия

Пло́щадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры[1], неформально говоря, показывающая размер этой фигуры. Исторически вычисление площади называлось квадратурой. Фигура, имеющая площадь, называется квадрируемой. Конкретное значение площади для простых фигур однозначно вытекает из предъявляемых к этому понятию практически важных требований (см. ниже). Фигуры с одинаковой площадью называются равновеликими.

Общий метод вычисления площади геометрических фигур предоставило интегральное исчисление. Обобщением понятия площади стала теория меры множества, пригодная для более широкого класса геометрических объектов.

Для приближённого вычисления площади на практике используют палетку или специальный измерительный прибор — планиметр.

Множество измеримо по Жордану, если внутренняя мера Жордана равна внешней мере Жордана

Площадь — функция, которая обладает следующими свойствами[2][1]:

  • Положительность, то есть площадь неотрицательна;
  • Аддитивность, то есть площадь фигуры равна сумме площадей составляющих её фигур без общих внутренних точек;
  • Инвариантность, то есть площади конгруэнтных фигур равны;
  • Нормированность, то есть площадь единичного квадрата равна 1.

Из данного определения площади следует её монотонность, то есть площадь части фигуры меньше площади всей фигуры[2].

Первоначально определение площади было сформулировано для многоугольников, затем оно было расширено на квадрируемые фигуры. Квадрируемой называется такая фигура, которую можно вписать в многоугольник и в которую можно вписать многоугольник, причём площади обоих многоугольников отличаются на произвольно малую величину. Такие фигуры называются также измеримыми по Жордану

[1]. Для фигур на плоскости, не состоящих из целого количества единичных квадратов, площадь определяется с помощью предельного перехода; при этом требуется, чтобы как фигура, так и её граница были кусочно-гладкими[3]. Существуют неквадрируемые плоские фигуры[1]. Предложенное выше аксиоматическое определение площади в случае плоских фигур обычно дополняют конструктивным, при котором с помощью палетки осуществляется собственно вычисление площади. При этом для более точных вычислений на последующих шагах используют палетки, у которых длина стороны квадрата в десять раз меньше длины у предыдущей палетки
[4]
.

Площадь квадрируемой плоской фигуры существует и единственна. Понятие площади, распространённое на более общие множества, привело к определению множеств, измеримых по Лебегу, которыми занимается теория меры. В дальнейшем возникают более общие классы, для которых свойства площади не гарантируют её единственность[1].

Под площадью в обобщённом смысле понимают численную характеристику k-мерной поверхности в n-мерном пространстве (евклидовом или римановом), в частности, характеристику двумерной поверхности в трёхмерном пространстве

[1].

Площадь плоской фигуры[править | править код]

На практике чаще всего требуется определить площадь ограниченной фигуры с кусочно-гладкой границей. Математический анализ предлагает универсальный метод решения подобных задач.

Декартовы координаты[править | править код]
Определённый интеграл как площадь фигуры Площадь между графиками двух функций равна разности интегралов от этих функций в одинаковых пределах интегрирования

Площадь, заключённая между графиком непрерывной функции на интервале [a,b]{\displaystyle [a,b]} и горизонтальной осью, может быть вычислена как определённый интеграл от этой функции:

S=∫abf(x)dx{\displaystyle S=\int \limits _{a}^{b}f(x)\,dx}

Площадь, заключённая между графиками двух непрерывных функций f(x),g(x){\displaystyle f(x),\,g(x)} на интервале [a,b]{\displaystyle [a,b]} находится как разность определённых интегралов от этих функций:

S=∫ab|f(x)−g(x)|dx{\displaystyle S=\int \limits _{a}^{b}\left|f(x)-g(x)\right|\,dx}

Полярные координаты[править | править код]

В полярных координатах: площадь, ограниченная графиком функции r=r(θ){\displaystyle r=r(\theta )} и лучами θ=θ1,θ=θ2,θ1<θ2{\displaystyle \theta =\theta _{1},\theta =\theta _{2},\theta _{1}<\theta _{2}} вычисляется по формуле:

S=12∫θ1θ2r2(θ)dθ{\displaystyle S={1 \over 2}\int \limits _{\theta _{1}}^{\theta _{2}}r^{2}(\theta )\,d\theta }.

Площадь поверхности[править | править код]

Для определения площади кусочно гладкой поверхности в трёхмерном пространстве используют ортогональные проекции к касательным плоскостям в каждой точке, после чего выполняют предельный переход. В результате, площадь искривлённой поверхности A, заданной вектор-функцией r=r(u,v),{\displaystyle \mathbf {r} =\mathbf {r} (u,v),}, даётся двойным интегралом[1]:

S=∬A|∂r∂u×∂r∂v|dudv.{\displaystyle S=\iint \limits _{A}\left|{\frac {\partial \mathbf {r} }{\partial u}}\times {\frac {\partial \mathbf {r} }{\partial v}}\right|\,du\,dv.}

То же в координатах:

S=∬A(D(x,y)D(u,v))2+(D(y,z)D(u,v))2+(D(z,x)D(u,v))2dudv{\displaystyle S=\iint \limits _{A}{\sqrt {\left({\frac {D(x,y)}{D(u,v)}}\right)^{2}+\left({\frac {D(y,z)}{D(u,v)}}\right)^{2}+\left({\frac {D(z,x)}{D(u,v)}}\right)^{2}}}\;\mathrm {d} \,u\,\mathrm {d} \,v}

Здесь D(y,z)D(u,v)=|yu′yv′zu′zv′|,D(z,x)D(u,v)=|zu′zv′xu′xv′|,D(x,y)D(u,v)=|xu′xv′yu′yv′|{\displaystyle {\frac {D(y,z)}{D(u,v)}}={\begin{vmatrix}y’_{u}&y’_{v}\\z’_{u}&z’_{v}\end{vmatrix}},\quad {\frac {D(z,x)}{D(u,v)}}={\begin{vmatrix}z’_{u}&z’_{v}\\x’_{u}&x’_{v}\end{vmatrix}},\quad {\frac {D(x,y)}{D(u,v)}}={\begin{vmatrix}x’_{u}&x’_{v}\\y’_{u}&y’_{v}\end{vmatrix}}}.

Теория площадей[править | править код]

Теория площадей занимается изучением обобщений, связанных с распространением определения k-мерной площади с кусочно-гладкого погружения на более общие пространства. Для кусочно-гладкого погружения f площадь определяют способом, аналогичным указанному выше, при этом у площади сохраняются такие свойства как положительность, аддитивность, нормированность, а также ряд новых.

{\frac  {D(y,z)}{D(u,v)}}={\begin{vmatrix}y В одном квадратном сантиметре сто квадратных миллиметров

Метрические единицы[править | править код]

Русские устаревшие[править | править код]

Мерами земли при налоговых расчётах были выть, соха, обжа, размеры которых зависели от качества земли и социального положения владельца. Существовали и различные местные меры земли: коробья, верёвка, жеребья и др.

Античные[править | править код]

Другие[править | править код]

Формулы вычисления площадей простейших фигур[править | править код]

Многоугольники[править | править код]

ФигураФормулаПеременные
Правильный треугольникa234{\displaystyle a^{2}{\frac {\sqrt {3}}{4}}}a{\displaystyle a} — длина стороны треугольника
Прямоугольный треугольникab2{\displaystyle {\frac {ab}{2}}}a{\displaystyle a} и b{\displaystyle b} — катеты треугольника
Произвольный треугольник12ah{\displaystyle {\frac {1}{2}}ah}a{\displaystyle a} — сторона треугольника, h{\displaystyle h} — высота, проведённая к этой стороне
12absin⁡α{\displaystyle {\frac {1}{2}}ab\sin \alpha }a{\displaystyle a} и b{\displaystyle b} — любые две стороны, α{\displaystyle \alpha } — угол между ними
p(p−a)(p−b)(p−c){\displaystyle {\sqrt {p(p-a)(p-b)(p-c)}}}
(формула Герона)
a{\displaystyle a}, b{\displaystyle b} и c{\displaystyle c} — стороны треугольника, p{\displaystyle p} — полупериметр (p=a+b+c2){\displaystyle \left(p={\frac {a+b+c}{2}}\right)}
12|x0y01x1y11x2y21|{\displaystyle {\frac {1}{2}}{\begin{vmatrix}x_{0}&y_{0}&1\\x_{1}&y_{1}&1\\x_{2}&y_{2}&1\end{vmatrix}}}(x0;y0){\displaystyle (x_{0};y_{0})}, (x1;y1){\displaystyle (x_{1};y_{1})}, (x2;y2){\displaystyle (x_{2};y_{2})} — координаты вершин треугольника (в случае обхода вершин по часовой стрелке получим положительный результат, иначе отрицательный)
Квадратa2{\displaystyle a^{2}}a{\displaystyle a} — длина стороны квадрата
Прямоугольникab{\displaystyle ab}a{\displaystyle a} и b{\displaystyle b} — длины сторон прямоугольника (его длина и ширина)
Ромб12cd{\displaystyle {\frac {1}{2}}cd}c{\displaystyle c} и d{\displaystyle d} — длины диагоналей ромба
Параллелограммah{\displaystyle ah}a{\displaystyle a} и h{\displaystyle h} — длины стороны и опущенной на неё высоты соответственно
absin⁡α{\displaystyle ab\sin \alpha }a{\displaystyle a} и b{\displaystyle b} — соседние стороны параллелограмма, α{\displaystyle \alpha } — угол между ними
Трапеция12(a+b)h{\displaystyle {\frac {1}{2}}(a+b)h}a{\displaystyle a} и b{\displaystyle b} — основания трапеции, h{\displaystyle h} — высота трапеции
Произвольный четырёхугольник(p−a)(p−b)(p−c)(p−d)−abcdcos⁡α{\displaystyle {\sqrt {(p-a)(p-b)(p-c)(p-d)-abcd\cos \alpha }}}
(формула Брахмагупты)
a{\displaystyle a}, b{\displaystyle b}, c{\displaystyle c}, d{\displaystyle d} — стороны четырёхугольника, p{\displaystyle p} — его полупериметр, α{\displaystyle \alpha } — полусумма противолежащих углов четырёхугольника
Правильный шестиугольникa2332{\displaystyle a^{2}{\frac {3{\sqrt {3}}}{2}}}a{\displaystyle a} — длина стороны шестиугольника
Правильный восьмиугольник2a2(1+2){\displaystyle 2a^{2}(1+{\sqrt {2}})}a{\displaystyle a} — длина стороны восьмиугольника
Правильный многоугольникP2/n4tg⁡(π/n){\displaystyle {\frac {P^{2}/n}{4\operatorname {tg} (\pi /n)}}}P{\displaystyle P} — периметр, n{\displaystyle n} — количество сторон
Произвольный многоугольник (выпуклый и невыпуклый)12|∑i=1n(xi+1−xi)(yi+1+yi)|{\displaystyle {\frac {1}{2}}\left|\sum _{i=1}^{n}(x_{i+1}-x_{i})(y_{i+1}+y_{i})\right|}
(метод трапеций)
(xi;yi){\displaystyle (x_{i};y_{i})} — координаты вершин многоугольника в порядке их обхода, замыкая последнюю с первой: (xn+1;yn+1)=(x1;y1){\displaystyle (x_{n+1};y_{n+1})=(x_{1};y_{1})}; при наличии отверстий направление их обхода противоположно обходу внешней границы многоугольника

Площади круга, его частей, описанных и вписанных в круг фигур[править | править код]

какой буквой или знаком пишется параметр площади в математике

В жизни каждого человека по достижении 7-летнего возраста появляется необходимость обучаться в средней общеобразовательной школе. В этом заведении ученик получает базовые знания и навыки. В рамках учебной программы по математике школьники узнают, как обозначается площадь. Необходимо рассмотреть, какой буквой и единицей измерения необходимо это делать.

Общие сведения

какой буквой обозначается площадь

какой буквой обозначается площадьИзучение того, как и какой буквой обозначается общая площадь, необходимо начать с определения данного понятия в математике.

Под площадью понимается характеристика, имеющая числовое выражение. Ею описывается геометрическая фигура в двухмерном пространстве.

Объект, по отношению к которому возникает вопрос, как обозначить в письменном выражении площадь, может быть плоским или искривленным.Обозначение площади дает представление о размере и параметрах изучаемой площади.

В отдельных литературных источниках общая площадь встречается под названием квадратуры. Фигура, для которой возможно обозначить площадь, имеет наименование квадрируемой. Геометрические объекты, для которых значение площади в полученном решении оказалось одинаковым, встречаются под названием равновеликих.

обозначение площади

обозначение площадиВозможность определения площади и обозначения ее буквой появилась благодаря интегральному исчислению в математике. Общее представление о данном понятии было получено в результате формулирования теории меры множества. Постулаты, составляющие данную теорию, являются правдивыми для большинства объектов, изучаемых в геометрии.

Возможность практического измерения данной величины отмечается в результате использования планиметра и специальной палетки.

Важно! Основы геометрии: что это такое биссектриса треугольника

Площадь, обозначение которой становится доступным в результате ее числового выражения, характеризуется следующими параметрами:

  1. Положительная. В числе ее характеристик отсутствует понятие отрицательного значения.
  2. Аддитивная. Данный показатель относительно любого геометрического объекта определяется как суммированное значение объектов, образующих изучаемую фигуру при отсутствии внутренних ограничений.
  3. Инвариантная. Позволяет приравнивать площади фигур, которые в движении переходят друг в друга и полностью совпадают.
  4. Нормированная. Соответствует правилу, согласно которому 1 составляет площадь единичного квадрата.
  5. Монотонная. Параметр площади отдельной части геометрического объекта не превышает общую площадь всей изучаемой фигуры.

как пишется площадь

как пишется площадьЗнак площади, используемый в математике, появился в результате присвоения данного параметра для многоугольных геометрических объектов. Впоследствии перечень фигур, в отношении к площади которых использовалось обозначение буквой, увеличился на группу квадрируемых объектов.

Обратите внимание, к категории квадрируемой относится объект, поддающийся вписыванию в пределы многоугольника. Также достоверной является способность заключить многоугольник в данный квадрируемый объект.

Познавательно! Как найти и чему будет равна длина окружности

Общее понимание категории позволяет ее трактовать в качестве числовой характеристики. При этом этот признак используется по отношению только к поверхности двухмерной, находящейся в пространстве трехмерном.

Для данного показателя присуща система измерения. Основными единицами, дающими представление о величине геометрического объекта, являются сантиметры, миллиметры, дециметры, метры, километры. В ряде источников встречается упоминание проведенных измерений в арах, гектарах. Отличительная особенность, свойственная для рассматриваемого показателя, — возведение единиц измерения в квадрат.

Важно! Урок геометрии: как найти по формуле периметр треугольника

Варианты обозначения

как пишется площадь

как пишется площадьПонятие используется не только в математике. Оно актуально и для физики.

В связи с разносторонностью применения возникает вопрос, какой буквой обозначается площадь.

В зависимости от дисциплины, в рамках которой применяется изучаемое понятие, становится очевидным ответ, какой буквой алфавита обозначают данную величину.

В таких науках, как физика и математика, используется знак латинского алфавита S. Данная буква имеет произношение {эс}.

Обратите внимание! Знаком S обозначают площадь таких фигур, как квадрат, треугольник, ромб, прямоугольник, круг.

знак площади в математике

знак площади в математикеСреди вопросов, занимающих умы студентов высших учебных заведений, присутствует тема: как обозначить данную величину нескольких геометрических объектов. В данном случае в письменном варианте применяются нижние индексы. Среди значений, используемых в индексной системе обозначений, присутствуют числа.

Примером выступает обозначение S1, S2, S3. Также считается допустимым применение сокращенных наименований геометрических объектов, по отношению к которым производится числовое измерение. Так, при изучении треугольников для сокращенного названия используются наименования вершин, обозначенные латинскими буквами. В качестве примера могут быть SAOB, SCLE, SOME.

Интересно! Что значит вертикально и как выглядит вертикальная линия

Актуальным для учащихся является вопрос, как пишется в физике площадь. Следует отметить, что данным понятием характеризуется поперечное сечение. Считается допустимым использовать для уточненного обозначения нижний индекс. Сохраняется возможность написания простых чисел в индексной системе.

Вопрос, как пишется в строительной механике и сопромате данная величина, заставляет задуматься студентов. В данных дисциплинах под буквой латинского алфавита S подразумевается обозначение статического момента. Так выражается площадь по отношению к рассматриваемой оси. В качестве символа, обозначающего данный показатель, используется буква латинского алфавита A или F.

Полезное видео

Подведем итоги

Пространственное представление об изучаемом геометрическом объекте становится возможным благодаря площади. Обозначение данного показателя разнится в зависимости от выбранной дисциплины.

Более подробную информацию по математическим нюансам  можно посмотреть тут.

Вконтакте

Одноклассники

Facebook

Мой мир

Twitter

Как обозначается площадь: какой буквой или знаком пишется параметр площади в математике

В жизни каждого человека по достижении 7-летнего возраста появляется необходимость обучаться в средней общеобразовательной школе. В этом заведении ученик получает базовые знания и навыки. В рамках учебной программы по математике школьники узнают, как обозначается площадь. Необходимо рассмотреть, какой буквой и единицей измерения необходимо это делать.

Общие сведения

какой буквой обозначается площадьИзучение того, как и какой буквой обозначается общая площадь, необходимо начать с определения данного понятия в математике.

Под площадью понимается характеристика, имеющая числовое выражение. Ею описывается геометрическая фигура в двухмерном пространстве.

Объект, по отношению к которому возникает вопрос, как обозначить в письменном выражении площадь, может быть плоским или искривленным.Обозначение площади дает представление о размере и параметрах изучаемой площади.

В отдельных литературных источниках общая площадь встречается под названием квадратуры. Фигура, для которой возможно обозначить площадь, имеет наименование квадрируемой. Геометрические объекты, для которых значение площади в полученном решении оказалось одинаковым, встречаются под названием равновеликих.

обозначение площадиВозможность определения площади и обозначения ее буквой появилась благодаря интегральному исчислению в математике. Общее представление о данном понятии было получено в результате формулирования теории меры множества. Постулаты, составляющие данную теорию, являются правдивыми для большинства объектов, изучаемых в геометрии.

Возможность практического измерения данной величины отмечается в результате использования планиметра и специальной палетки.

Важно! Основы геометрии: что это такое биссектриса треугольника

Площадь, обозначение которой становится доступным в результате ее числового выражения, характеризуется следующими параметрами:

  1. Положительная. В числе ее характеристик отсутствует понятие отрицательного значения.
  2. Аддитивная. Данный показатель относительно любого геометрического объекта определяется как суммированное значение объектов, образующих изучаемую фигуру при отсутствии внутренних ограничений.
  3. Инвариантная. Позволяет приравнивать площади фигур, которые в движении переходят друг в друга и полностью совпадают.
  4. Нормированная. Соответствует правилу, согласно которому 1 составляет площадь единичного квадрата.
  5. Монотонная. Параметр площади отдельной части геометрического объекта не превышает общую площадь всей изучаемой фигуры.

как пишется площадьЗнак площади, используемый в математике, появился в результате присвоения данного параметра для многоугольных геометрических объектов. Впоследствии перечень фигур, в отношении к площади которых использовалось обозначение буквой, увеличился на группу квадрируемых объектов.

Обратите внимание, к категории квадрируемой относится объект, поддающийся вписыванию в пределы многоугольника. Также достоверной является способность заключить многоугольник в данный квадрируемый объект.

Познавательно! Как найти и чему будет равна длина окружности

Общее понимание категории позволяет ее трактовать в качестве числовой характеристики. При этом этот признак используется по отношению только к поверхности двухмерной, находящейся в пространстве трехмерном.

Для данного показателя присуща система измерения. Основными единицами, дающими представление о величине геометрического объекта, являются сантиметры, миллиметры, дециметры, метры, километры. В ряде источников встречается упоминание проведенных измерений в арах, гектарах. Отличительная особенность, свойственная для рассматриваемого показателя, возведение единиц измерения в квадрат.

Важно! Урок геометрии: как найти по формуле периметр треугольника

Варианты обозначения

как пишется площадьПонятие используется не только в математике. Оно актуально и для физики.

В связи с разносторонностью применения возникает вопрос, какой буквой обозначается площадь.

В зависимости от дисциплины, в рамках которой применяется изучаемое понятие, становится очевидным ответ, какой буквой алфавита обозначают данную величину.

В таких науках, как физика и математика, используется знак латинского алфавита S. Данная буква имеет произношение {эс}.

Обратите внимание! Знаком S обозначают площадь таких фигур, как квадрат, треугольник, ромб, прямоугольник, круг.

знак площади в математикеСреди вопросов, занимающих умы студентов высших учебных заведений, присутствует тема: как обозначить данную величину нескольких геометрических объектов. В данном случае в письменном варианте применяются нижние индексы. Среди значений, используемых в индексной системе обозначений, присутствуют числа.

Примером выступает обозначение S1, S2, S3. Также считается допустимым применение сокращенных наименований геометрических объектов, по отношению к которым производится числовое измерение. Так, при изучении треугольников для сокращенного названия используются наименования вершин, обозначенные латинскими буквами. В качестве примера могут быть SAOB, SCLE, SOME.

Интересно! Что значит вертикально и как выглядит вертикальная линия

Актуальным для учащихся является вопрос, как пишется в физике площадь. Следует отметить, что данным понятием характеризуется поперечное сечение. Считается допустимым использовать для уточненного обозначения нижний индекс. Сохраняется возможность написания простых чисел в индексной системе.

Вопрос, как пишется в строительной механике и сопромате данная величина, заставляет задуматься студентов. В данных дисциплинах под буквой латинского алфавита S подразумевается обозначение статического момента. Так выражается площадь по отношению к рассматриваемой оси. В качестве символа, обозначающего данный показатель, используется буква латинского алфавита A или F.

Полезное видео

Подведем итоги

Пространственное представление об изучаемом геометрическом объекте становится возможным благодаря площади. Обозначение данного показателя разнится в зависимости от выбранной дисциплины.

Список обозначений в физике — Википедия

СимволЗначение и происхождение
A{\displaystyle A}Площадь (лат. area), векторный потенциал[1], работа (нем. Arbeit), амплитуда (лат. amplitudo), параметр вырождения, Работа выхода (нем. Austrittsarbeit), коэффициент Эйнштейна для спонтанного излучения, массовое число
a{\displaystyle a}Ускорение (лат. acceleratio), амплитуда (лат. amplitudo), активность (лат. activitas), коэффициент температуропроводности, вращательная способность, радиус Бора, натуральный показатель поглощения света
B{\displaystyle B}Вектор магнитной индукции[1], барионный заряд (англ. baryon number), удельная газовая постоянная, вириальний коэффициент, функция Бриллюэна (англ. Brillion function), ширина интерференционной полосы (нем. Breite), яркость, постоянная Керра, коэффициент Эйнштейна для вынужденного излучения, коэффициент Эйнштейна для поглощения, вращательная постоянная молекулы
b{\displaystyle b}Вектор магнитной индукции[1], красивый кварк (англ. beauty/bottom quark), постоянная Вина, ширина распада (нем. Breite)
C{\displaystyle C}Электрическая ёмкость (англ. capacitance), теплоёмкость (англ. heatcapacity), постоянная интегрирования (лат. constans), очарование (чарм, шарм; англ. charm), коэффициенты Клебша — Гордана (англ. Clebsch-Gordan coefficients), постоянная Коттона — Мутона (англ. Cotton-Mouton constant), кривизна (лат. curvatura)
c{\displaystyle c}Скорость света (лат. celeritas), скорость звука (лат. celeritas), Теплоёмкость (англ. heat capacity), очарованный кварк (англ. charm quark), концентрация (англ. concentration), первая радиационная постоянная, вторая радиационная постоянная
D{\displaystyle D}Вектор электрической индукции[1] (англ. electric displacement field), Коэффициент диффузии (англ. diffusion coefficient), Оптическая сила (англ. dioptric power), коэффициент прохождения, тензор квадрупольного электрического момента, угловая дисперсия спектрального прибора, линейная дисперсия спектрального прибора, коэффициент прозрачности потенциального барьера, D-мезон (англ. D meson), Диаметр (лат. diametros, др.-греч. διάμετρος)
d{\displaystyle d}Расстояние (лат. distantia), Диаметр (лат. diametros, др.-греч. διάμετρος), дифференциал (лат. differentia), нижний кварк (англ. down quark), дипольный момент (англ. dipole moment), период дифракционной решётки, толщина (нем. Dicke)
E{\displaystyle E}Энергия (лат. energīa), напряжённость электрического поля[1] (англ. electric field), Электродвижущая сила (англ. electromotive force), магнитодвижущая сила, освещенность (фр. éclairement lumineux), излучательная способность тела, модуль Юнга
e{\displaystyle e}Основание натуральных логарифмов (2,71828…), электрон (англ. electron), элементарный электрический заряд (англ. elementaty electric charge), константа электромагнитного взаимодействия
F{\displaystyle F}Сила (лат. fortis), постоянная Фарадея (англ. Faraday constant), свободная энергия Гельмгольца (нем. freie Energie), атомный фактор рассеяния, тензор электромагнитного поля, магнитодвижущая сила, модуль сдвига, фокусное расстояние (англ. focal length)
f{\displaystyle f}Частота (лат. frequentia), функция (лат. functia), летучесть (нем. Flüchtigkeit), сила (лат. fortis), фокусное расстояние (англ. focal length), сила осциллятора, коэффициент трения
G{\displaystyle G}Гравитационная постоянная (англ. gravitational constant), тензор Эйнштейна, свободная энергия Гиббса (англ. Gibbs free energy), метрика пространства-времени, вириал, парциальная мольная величина, поверхностная активность адсорбата, модуль сдвига, полный импульс поля, Глюон (англ. gluon), константа Ферми, квант проводимости, электрическая проводимость, Вес (нем. Gewichtskraft)
g{\displaystyle g}Ускорение свободного падения (англ. gravitational acceleration), Глюон (англ. gluon), фактор Ланде, фактор вырождения, весовая концентрация, Гравитон (англ. graviton), метрический тензор
H{\displaystyle H}Напряжённость магнитного поля[1], эквивалентная доза, энтальпия (англ. heat contents или от греческой буквы «эта», H — ενθαλπος[2]), гамильтониан (англ. Hamiltonian), функция Ганкеля (англ. 
H
ankel function), функция Хевисайда (англ. Heaviside step function), бозон Хиггса (англ. Higgs boson), экспозиция, полиномы Эрмита (англ. Hermite polynomials)
h{\displaystyle h}Высота (нем. Höhe), постоянная Планка (нем. Hilfsgröße[3]), спиральность (англ. helicity)
I{\displaystyle I}сила тока (фр. intensité de courant), интенсивность звука (лат. intēnsiō), интенсивность света (лат. intēnsiō), сила излучения, сила света, момент инерции, вектор намагниченности
i{\displaystyle i}Мнимая единица (лат. imaginarius), единичный вектор (координатный орт)
J{\displaystyle J}Плотность тока (также 4-вектор плотности тока), момент импульса, функция Бесселя, момент инерции, полярный момент инерции сечения, вращательное квантовое число, сила света, J/ψ-мезон
j{\displaystyle j}Мнимая единица (в электротехнике и радиоэлектронике), плотность тока (также 4-вектор плотности тока), единичный вектор (координатный орт)
K{\displaystyle K}Каона (англ. kaons), термодинамическая константа равновесия, коэффициент электронной теплопроводности металлов, модуль всестороннего сжатия, механический импульс, постоянная Джозефсона, кинетическая энергия
k{\displaystyle k}Коэффициент (нем. 
K
oeffizient), постоянная Больцмана, теплопроводность, волновое число, единичный вектор (координатный орт)
L{\displaystyle L}Момент импульса, дальность полёта, удельная теплота парообразования и конденсации, индуктивность, функция Лагранжа (англ. Lagrangian), классическая функция Ланжевена (англ. Langevin function), число Лоренца (англ. Lorenz number), уровень звукового давления, полиномы Лагерра (англ. Laguerre polynomials), орбитальное квантовое число, энергетическая яркость, яркость (англ. luminance)
l{\displaystyle l}Длина (англ. length), длина свободного пробега (англ. 
l
ength), орбитальное квантовое число, радиационная длина
M{\displaystyle M}Момент силы, масса (лат. massa, от др.-греч. μᾶζα, кусок теста), вектор намагниченности (англ. magnetization), крутящий момент, число Маха, взаимная индуктивность, магнитное квантовое число, молярная масса
m{\displaystyle m}Масса, магнитное квантовое число (англ. magnetic quantum number), магнитный момент (англ. magnetic moment), эффективная масса, дефект массы, масса Планка
N{\displaystyle N}Количество (лат. numerus), постоянная Авогадро, число Дебая, полная мощность излучения, увеличение оптического прибора, концентрация, мощность, сила нормальной реакции
n{\displaystyle n}Показатель преломления, количество вещества, нормальный вектор, единичный вектор, нейтрон (англ. neutron), количество (англ. number), основное квантовое число, частота вращения, концентрация, показатель политропы, постоянная Лошмидта
O{\displaystyle O}Начало координат (лат. origo)
P{\displaystyle P}Мощность (лат. potestas), давление (лат. pressūra), полиномы Лежандра, вес (фр. poids), сила тяжести, вероятность (лат. probabilitas), поляризуемость, вероятность перехода, импульс (также 4-импульс, обобщённый импульс; лат. 
p
etere)
p{\displaystyle p}Импульс (также 4-импульс, обобщённый импульс; лат. petere), протон (англ. proton), дипольный момент, волновой параметр, давление, число полюсов, плотность.
Q{\displaystyle Q}Электрический заряд (англ. quantity of electricity), количество теплоты (англ. quantity of heat), объёмный расход, обобщённая сила, хладопроизводительность, энергия излучения, световая энергия, добротность (англ. quality factor), нулевой инвариант Аббе, квадрупольный электрический момент (англ. quadrupole moment), энергия ядерной реакции
q{\displaystyle q}Электрический заряд, обобщённая координата, количество теплоты (англ. 
q
uantity of heat), эффективный заряд, добротность
R{\displaystyle R}Электрическое сопротивление (англ. resistance), универсальная газовая постоянная, постоянная Ридберга (англ. R ydberg constant), постоянная фон Клитцинга, коэффициент отражения, сопротивление излучения (англ. resistance), разрешение (англ. resolution), светимость, пробег частицы, расстояние
r{\displaystyle r}Радиус (лат. radius), радиус-вектор, радиальная полярная координата, удельная теплота фазового перехода, удельная рефракция (лат. rēfractiō), расстояние
S{\displaystyle S}Площадь поверхности (англ. 
s
urface area), энтропия[4], действие, спин (англ. spin), спиновое квантовое число (англ. spin quantum number), странность (англ. strangeness), главная функция Гамильтона, матрица рассеяния (англ. scattering matrix), оператор эволюции, вектор Пойнтинга
s{\displaystyle s}Перемещение (итал. spostamento), странный кварк (англ. strange quark), путь, пространственно-временной интервал (англ. spacetime interval), оптическая длина пути
T{\displaystyle T}Температура (лат. temperātūra), период (лат. tempus), кинетическая энергия, критическая температура, терм, период полураспада, критическая энергия, изоспин
t{\displaystyle t}Время (лат. tempus), истинный кварк (англ. true quark), правдивость (англ. truth), планковское время
U{\displaystyle U}Внутренняя энергия, потенциальная энергия, вектор Умова, потенциал Леннард-Джонса, потенциал Морзе, 4-скорость, электрическое напряжение
u{\displaystyle u}Верхний кварк (англ. up quark), скорость, подвижность, удельная внутренняя энергия, групповая скорость
V{\displaystyle V}Объём (фр. volume), электрическое напряжение (англ. voltage), потенциальная энергия, видность полосы интерференции, постоянная Верде (англ. Verdet constant)
v{\displaystyle v}Скорость (лат. vēlōcitās), фазовая скорость, удельный объём
W{\displaystyle W}Механическая работа (англ. work), работа выхода, W-бозон, энергия, энергия связи атомного ядра, мощность
w{\displaystyle w}Скорость, плотность энергии, коэффициент внутренней конверсии, ускорение
X

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *