Паропроницаемость гипсокартон: Паропроницаемость строительных материалов – Паропроницаемость материалов — таблица

Содержание

Паропроницаемость строительных материалов

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2• ч • Па/мг) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) — 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий — Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.


Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться:

СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. – м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материалов в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Пример пренебрежения паропроницаемостью строительных материалов в многослойных стенах: укрытие деревянных стен паронепроницаемым рубероидом привело к биологическому разрушению дерева в условиях постоянного увлажнения. При укрытии ячеистых бетонов паронепроницаемыми материалами (кирпичная кладка, ЭППС) происходит переувлажнение стен и их постепенное разрушение при периодическом промерзании.

Показатели паропроницаемости «сухих» строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости «влажных» строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Паропроницаемость материалов — таблица

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения

Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость

Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости

Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара

Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств

Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен

Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев

Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов

При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

0,013

пенополиуретан

0,05

минеральная вата

0,3 – 0,55

фанера

0,02

железобетон, бетон

0,03

сосна или ель

0,06

керамзит

0,21

пенобетон, газобетон

0,26

кирпич

0,11

гранит, мрамор

0,008

гипсокартон

0,075

дсп, осп, двп

0,12

песок

0,17

пеностекло

0,02

рубероид

0,001

полиэтилен

0,00002

линолеум

0,002

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов

Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Что еще почитать по теме?

Автор статьи:

Сергей Новожилов — эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Понравилась статья? Поделись с друзьями в социальных сетях:

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Статья о паропроницаемости, теплопроводности, теплоустойчивости строительных материалов

На микроклимат помещения влияют физические свойства материалов из которого оно построено, а так же их последовательность внутри ограждающей конструкции. Основные физические свойства материалов: плотность, паропроницаемость, теплопроводность, теплоустойчивость и теплоусвоение.

Паропроницаемость. Многие слышали, что «дышащие» стены – это вроде бы хорошо. Но далеко не все знают, что это вообще такое. Так вот материал называют «дышащим», если он пропускает не только воздух, но и пар, то есть имеет паропроницаемость. Керамзит, дерево и пенобетон имеют хорошую паропроницаемостью. Некоторой паропроницаемостью облажает кирпич и бетон, но очень маленькой. Выдыхаемый человеком, выделяемый при приготовлении пищи или принятии ванной, пар, если в доме нет вытяжки, создаёт повышенную влажность. Признаком этого является появление конденсата на окнах или на трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме легко дышится.

На самом деле это не совсем так. В современном доме, даже если стены в доме из «дышащего» материала, 96% пара, удаляется из помещений через вытяжку и форточку, и только 4% через стены. Если на стены наклеены виниловые или флизиленовые обоями, то стены влагу не пропускают. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветреную погоду из дома выдувает тепло. А ещё они менее долговечны. Чем выше паропроницаемость материала, тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы»  превращается в воду. Производители строительных материалов, таких как газоблок и пенобетон, хитрят, когда рассчитывают теплопроводность материала, они всегда считают, что материал идеально сухой. Теплопроводность отсыревшего газоблока увеличивается в 5 раз, то есть в доме будет, мягко говоря, очень холодно. Но самое страшное, что при падении ночью температуры, точка росы смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов вещь не только бесполезная, но и вредная.

В многослойной конструкции на паропроницаемость влияет последовательность слоев и расположение утеплителя. На рис 1 видно, что вероятность распределения температуры, давления насыщенного пара Рн и давления не насыщенного пара Рр предпочтительнее, если утеплитель находиться с фасадной стороны ограждающей конструкции. При расположении утеплителя внутри здания между ним и несущей конструкциеей образуется конденсат, который ухудшает микроклимат помещения и постепенно разрушает несущую сину.

паропроницаемость (1).jpg

Рис 1 — Расположение утеплителя внутри и снаружи ограждающей конструкции

Теплопроводность — один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. Если материал стен обладает высокой теплопроводностью, то жить в таком доме будет крайне не комфортно. Стены будут быстро проводить тепло или холод с улицы в помещение.

Теплоемкость – количество теплоты, которое нужно подвести к объему вещества, для изменения его температуры.

Теплоусвоение. Теплофизические свойства ограждающей конструкции выравнивать колебания температуры в помещении, за счет поглощения ее материалом стен. Это свойство особенно полезно в условиях теплого кубанского климата. Днем материал стен поглощает тепло и отдает прохладу, ночью поглощает прохладу, отдает тепло. Усвоение тепла материалом ограждающей конструкции определяется коэффициентом теплоусвоения и зависит от величины теплопроводности, теплоемкости и объемной массы стены. Чем выше эти параметры, тем сильнее материал будет сглаживать температуру. Из таблицы 1 видно, что наибольшим теплоусвоением обладают металлы, из каменных конструкций бетон и железобетон.

Теплоустойчивость. Свойство ограждающей конструкции сохранять при колебаниях потока тепла относительное постоянство температуры на поверхности, обращенной в помещение, называется теплоустойчивостью. От постоянства температуры на внутренней поверхности ограждающих конструкций зависит обеспечение условий комфорта для пребывающих в помещении людей.

Теплоустойчивость ограждающей конструкции обеспечивается преимущественно теплоемкостью слоя резких колебаний. В часы действия отопления тепло накапливается в этом слое, а при перерывах в работе отопительной системы поступает в помещение, согревая внутренний воздух и обеспечивая относительное постоянство его температуры.
Такая теплоемкость может быть названа активной. Если указанный слой будет выполнен из материала с большим теплоусвоением, то в значительной мере будет обеспечена теплоустойчивость всей ограждающей конструкции. 

Таблица 1. Плотности, теплопроводности и паропроницаемости строительных материалов.

Материал

Плотность, кг/м3

Теплопроводность, Вт/(м*С)

Паропроницаемость,
Мг/(м*ч*Па)

Железобетон 2500 1.69 0.03
Бетон 2400 1.51 0.03
Керамзитобетон 1800 0.66 0.09
Керамзитобетон 500 0.14 0.30
Кирпич красный глиняный 1800 0.56 0.11
Кирпич, силикатный 1800 0.70 0.11
Кирпич керамический пустотелый (брутто1400) 1600 0.41 0.14
Кирпич керамический пустотелый (брутто1000) 1200 0.35 0.17
Пенобетон 1000 0.29 0.11
Пенобетон 300 0.08 0.26
Гранит 2800 3.49 0.008
Мрамор 2800 2.91 0.008
Сосна, ель поперек волокон 500 0.09 0.06
Дуб поперек волокон 700 0.10 0.05
Сосна, ель вдоль волокон 500 0.18 0.32
Дуб вдоль волокон 700 0.23 0.30
Фанера клееная 600 0.12 0.02
ДСП, ОСП 1000 0.15 0.12
ПАКЛЯ 150 0.05 0.49
Гипсокартон 800 0.15 0.075
Картон облицовочный 1000 0.18 0.06
Минвата 200 0.070 0.49
Минвата 100 0.056 0.56
Минвата 50 0.048 0.60
ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ 33 0.031 0.013
ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ 45 0.036 0.013
Пенополистирол 150 0.05 0.05
Пенополистирол 100 0.041 0.05
Пенополистирол 25 0.038 0.05
Пенопласт ПВХ 125 0.052 0.23
ПЕНОПОЛИУРЕТАН 80 0.041 0.05
ПЕНОПОЛИУРЕТАН 60 0.035 0.0
ПЕНОПОЛИУРЕТАН 40 0.029 0.05
ПЕНОПОЛИУРЕТАН 30 0.020 0.05
Керамзит 800 0.18 0.21
Керамзит 200 0.10 0.26
Песок 1600 0.35 0.17
Пеностекло 400 0.11 0.02
Пеностекло 200 0.07 0.03
АЦП 1800 0.35 0.03
Битум 1400 0.27 0.008
ПОЛИУРЕТАНОВАЯМАСТИКА 1400 0.25 0.00023
ПОЛИМОЧЕВИНА 1100 0.21 0.00023
Рубероид, пергамин 600 0.17 0.001
Полиэтилен 1500 0.30 0.00002
Асфальтобетон 2100 1.05 0.008
Линолеум 1600 0.33 0.002
Сталь 7850 58 0
Алюминий 2600 221 0
Медь 8500 407 0
Стекло 2500 0.76 0

Подведем итог. Ограждающая конструкция дома (стена), должна обладать минимальной паропроницаемостью и теплопроводностью и в то же время быть теплоемкой и теплоустойчивой. Из таблицы видно, что такого эффекта нельзя добиться, используя для возведения стены один материал. Фасадная (наружная) часть стены должна сдерживать холод (минимальная теплопроводность) и не давать ему пройти к внутреннему теплоемкому материалу, который будет сглаживать температуру внутри дома. Для внутреннего материала идеально подходит армированный бетон, он обладает максимальной теплоемкостью и плотностью, также это один из самых прочных строительных материалов. Применение бетона для несущей стены позволит сгладить разницу дневной и ночной температуры в помещении (см. рис 2) и даст вам увеличение в полезной площади дома. (рис 3)

График колебания летних.jpg

Рис. 2 — График колебания летних температур в краснодарском крае.

1 — колебания температуры на улице;
2 — коллебания температуры в помещении построенном из пено- или газоблока;
3 — температура в утепленном монолитном доме (система «ТЕХНОБЛОК»)

Как наружный утеплитель можно использовать пенополистирол, пенополиуретан или минвату, все три материала обладают небольшой теплопроводностью и давно используются в строительстве. Для защиты слоя утеплителя можно использовать штукатурку, мокрый фасад или облицовочные панели. Наша компания использует панели «ТЕХНОБЛОК», которые зарекомендовали себя как надежный материал, позволяют существенно сэкономить время и деньги. 

Паропроницаемость внутреннего слоя должна быть ниже, чем наружного, для свободного выходы пара за стены дома. При таком решении «точка расы» так же расположена за пределами несущей стены и не разрушает стен здания. Для предотврощения выпадения конденсата внутри ограждающей конструкции сопротивление теплопередаче в стене должно уменьшаться, а сопротивление паропроницанию возрастать снаружи внутрь. Все это предусмотрено в предложенной конструкции (рис 2).

Статья выполнена специалистами компании «ТЕХНОБЛОК».

Паропроницаемость материалов таблица

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

 

 

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.

 

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

 

 

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.Рисунок подробно демонстрирует действие давления и проникновение пара в материал.

 

 

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом

Таблица становится понятна, если разобраться с коэффициентом.

 

 

Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.Сопротивления паропроницанию

 

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

Виды и правила выбора гипсокартона

Современные листовые материалы значительно облегчают выполнение ремонтных и отделочных работ в доме или квартире. В зависимости от категории помещения, для обшивки стен и потолков могут использоваться разные виды гипсокартона. Востребованность материала объясняется отличными эксплуатационными качествами, но для правильного выбора необходимо учитывать особенности продукции.

1_result
 

Разновидности и маркировка гипсокартона

Плиты ГКЛ используются преимущественно для обшивки вертикальных оснований и возведения перегородок, но универсальность материала позволяет применять его и для облицовки потолков. При наличии некоторого опыта можно создавать многоярусные подвесные конструкции.

Для удобства производители выпускают следующие виды изделий, которые различаются свойствами:

  • ГКЛ (GKB). Простая вариация – самая недорогая, популярная и часто встречающаяся. Материал подходит для выполнения работ в помещениях со стабильной влажностью в пределах 60% и постоянным отоплением. Продукция имеет серый цвет и синие обозначения.
  • ГКЛВ (GKBI). Влагостойкая разновидность применяется для обшивки поверхностей в ванной, прихожей, кухне и лоджии. Устойчивость к воздействию обусловлена добавками в составе (в том числе антисептический компонент), а также водоотталкивающей пропиткой внешнего слоя картона. Плиты зеленоватого оттенка с синей маркировкой.
  • ГКЛО (GKF). Огнестойкие листы применяются для отделки помещений, предрасположенных к появлению огня, и эвакуационных объектов. Продукция также подходит для облицовки участков каминов, вытяжек и отводящих труб котла отопления. Устойчивость достигается за счет включения в состав армирующих материалов и специальных добавок. Изделия розового цвета с красными обозначениями.

    На рынке наиболее востребованными считаются обычный, влагостойкий и огнестойкий материал, визуально их можно различить по цвету «рубашки»На рынке наиболее востребованными считаются обычный, влагостойкий и огнестойкий гипсокартон, визуально их можно различить по цвету «рубашки»

  • ГКЛВО (GKFI). Универсальный вид, объединяет в себе параметры огнестойкости и влагостойкости. Продукция имеет зеленый цвет и красную маркировку.
  • ГКЛА (AKU-LINE). Акустические (звукоизоляционные) изделия с перфорированной поверхностью и облицовкой из нетканого материала с тыльной стороны подходят для звукозаписывающих студий и кафе.
  • ГКЛД (GN 6). Дизайнерская вариация. Хорошо сгибается, сохраняя прочность, применяется для создания арки и других сложных форм.

    На рынке наиболее востребованными считаются обычный, влагостойкий и огнестойкий материал, визуально их можно различить по цвету «рубашки»К дизайнерской продукции также можно отнести ламинированные листы, стоит такая отделка дороже, но она не требует шпаклевки и покраски

  • ГКЛУ (GEK 13). Усиленный гипсокартон используется для возведения перегородок и различных конструкций. Встречается крайне редко, аналог – влагостойкий вариант ГКЛВУ, классифицирующийся как GRI 13.
  • ГКЛЗ (GTS 9). Ветрозащитная или фасадная разновидность. Листовой материал отвечает всем требованиям, которые предъявляются к наружной продукции.

Но усиление некоторых свойств не дает полной защиты. Так, ГКЛВ не способен долгое время противостоять прямому контакту с водой, а ГКЛО при воздействии огня сохраняет целостность лишь немного дольше, чем обычный.

Типы кромок

Гипсокартонные плиты различаются не только свойствами, но и конфигурацией фаски. Разные варианты краев обеспечивают удобство финишной отделки.
 

Существуют следующие виды:

  1. ПК (SK). Прямая, наиболее популярная вариация, которая характерна для стенового ГКЛ. Отличается простотой заделки швов, при стыковке вплотную обработка не требуется.
  2. УК (АК). Утоненная, имеет конфигурацию «лодочка». Получаемый стык предполагает использование армирующей ленты, которая наклеивается во время шпаклевания.
  3. ПЛК (HRK). Имеет полукруглую форму, расположенную с лицевой стороны плиты. Обеспечивает укладку раствора без применения армирующего материала.
  4. ЗК (RК). Закругленная фаска обрабатывается аналогично предыдущему варианту.
  5. ПЛУК (HRAK). Сочетает в себе технические параметры АК и HRK. Кромка полукруглая и утоненная. Для финишной отделки используется лента вместе со шпаклевкой.
На рынке наиболее востребованными считаются обычный, влагостойкий и огнестойкий материал, визуально их можно различить по цвету «рубашки»Так как во время монтажа часть листов режется, стартовая конфигурация кромки принципиального значения не имеет, но при правильном выборе на больших площадях можно сэкономить время и силы

Соответствующие обозначения присутствуют в описании на поверхности плиты, тип указывается рядом с видом гипсокартона.

На заметку! Хотя материалы с прямой кромкой созданы для плотного соединения деталей, такой монтаж не всегда возможен, поэтому фаска формируется самостоятельно.

Технические характеристики

Показатели плит ГКЛ регламентируются ГОСТом 6266-97:

На рынке наиболее востребованными считаются обычный, влагостойкий и огнестойкий материал, визуально их можно различить по цвету «рубашки»В бытовых условиях наиболее важными характеристиками материала считаются уровень водопоглощения и прочность листа на изгиб

К характеристикам гипсокартона относится и срок службы. Долговечность составляет не менее 10 лет, но зависит от правильности определения разновидности, точности монтажа и соблюдения условий эксплуатации.

Нюансы

При выборе плит ГКЛ необходимо учитывать некоторые рекомендации:

  1. Лучше отдавать предпочтение известным брендам, их продукция реализуется в крупных строительных магазинах.

    На рынке наиболее востребованными считаются обычный, влагостойкий и огнестойкий материал, визуально их можно различить по цвету «рубашки»Известная торговая марка уже сама по себе считается определенной гарантией качества, но эти бренды часто подделывают, поэтому следует помнить, что хороший товар не может стоить дешево

  2. Обязательно производится расчет нужного количества материала с небольшим запасом. В зависимости от типа комнаты, подбирается соответствующая разновидность.
  3. Оценивается нагрузка на стены из расчета среднего веса плиты 28 кг, а также способность выдерживать навешиваемые предметы интерьера и оборудование.
  4. При визуальном осмотре листы должны иметь целостную структуру без дефектов и повреждений. Учитывается, что даже у известных марок бывают бракованные детали.

Немаловажным моментом является последующая транспортировка и хранение материала: перед применением листы выдерживают в сухом помещении дома или квартиры не менее 24 часов.

Варианты внутренней отделки газобетонных стен с сохранением или снижением уровня паропроницаемости

В статье рассматриваются различные варианты, позволяющие создать наиболее оптимальный для человека микроклимат внутри здания. Также рассказывается,как должна производится отделка стен из газобетона для сохранения или снижения уровня паропроницаемости.

Строительные материалы из газобетона пользуются популярностью во всем мире благодаря своим положительным свойствам. Газобетонные блоки легко обрабатываются, обладают высокой прочностью и теплоизоляцией, они огнеупорны и долговечны. Но необходимо учитывать, что отделка внутренних стен из газобетона требует правильного выбора отделочных материалов, поскольку необходимо учитывать следующие взаимоисключающие факторы:

  • паропроницаемость, от нее зависит, насколько будет комфортным помещение. Этот фактор оказывает существенное влияние на создание микроклимата благоприятного для организма человека;
  • уровень гигроскопичности, влага, проникающая в газобетонные блоки, способствует их быстрому износу, поэтому возникает необходимость в паронепроницаемой отделке.

Отделка, не снижающая уровень паропроницаемости

Как правило , большинство заказчиков останавливаются именно на таком варианте. В этом случае отделка внутренних стен дома требует подбора материалов с допустимым уровнем паропроницаемости. К ним относятся различные типы штукатурных смесей для внутренней отделки на гипсовой основе. Они также включают в себя легкий перлитовый песок и гашенную известь.

Важно! Многие виды штукатурных смесей, можно наносить на поверхность без предварительной обработки ее грунтовкой.

Это позволяет существенно сэкономить денежные средства.
Такая штукатурка не препятствует проникновению водяных паров, она легко наносится и обрабатывается. При ровном нанесении слоя допускается не выравнивать поверхность шпатлевкой (например, если на стены будут клеиться бумажные обои). В том случае, когда требуется выровнять поверхность, это можно сделать специальным сухим шпатлевочным составом с добавками наполнителя, например, молотого мрамора или известняка, мела, микродоломита, микрокальцита и т.д.

При выборе шпатлевочного состава лучше отдать предпочтение зарубежным производителям. Это связано с тем, что в них фракции наполнителя имеют размер 60-90 микрон, в то время как у многих отечественных изготовителей этот показатель на уровне 100-120 микрон, а иногда и 200.
Обратите внимание, что пылевые фракции (10-30мкн) также не подходят, поскольку существенно снижают параметр паропроницаемости.

Рекомендуем использовать шпатлевку, где в качестве наполнителя используется микродоломит. У нее белизна на уровне 92% (то есть практически отсутствуют оттенки), помимо этого, она отлично затирается, поэтому чистовая отделка внутренних газобетонных стен не вызовет сложностей. Входящие в состав полимерные добавки (около 2,5%) не влияют на уровень паропроницаемости.

Слой штукатурки получается довольно прочным, но в тоже время он без труда затирается. У материала отличная укрывистость, что позволяет наносить за один проход слой восьмимиллиметровой толщины без риска появления трещин от усадки. У минимального слоя (0,5мм) время коррекции около 10 минут (при комнатной температуре не ниже 20°С). После обработки поверхности на нее можно наносить краску.

Также неплохим вариантом паропроницаемой системы считается отделка газобетонных стен гипсокартонном, такой способ называется «сухая штукатурка» . Монтаж этого материала не вызывает сложностей. Стена предварительно грунтуется, после чего производится установка панелей на предварительно собранный каркас. Помимо этого допускается приклеивать панели при помощи специального строительного клея. Выбор варианта крепления существенно не влияет на уровень паропроницаемости. После установки гипсокартон грунтуется и штукатурится, на готовую поверхность можно наклеить обои или нанести краску.

Важно! Штукатурку гипсокартона необходимо делать «дышашей» шпатлевкой (на гипсовой основе). Если планируется его покраска, то делать это нужно водно-дисперсионной краской. В том случае, если будут наносится обои, они должны быть на бумажной или флизелиновой основе. Это позволит сохранить паропроницаемые свойства материала.

Вариант пароизолирующей отделки стен из газобетона

Если производится отделка внутренних стен бани или парилки, то в этом случае потребуется обеспечить достаточный уровень пароизоляции. Заметим, что эта задача не такая сложная, как кажется. Есть много способов, позволяющих сделать частичную или полную пароизоляцию, например, разместив под отделочным слоем обычную полиэтиленовую пленку.

Важно! Не рекомендуем такой вариант, поскольку он способствует накоплению конденсата, что может привести к вздутию стены.

Чтобы снизить паропроницаемость поверхности от 8 до 10 раз, достаточно наклеить на нее обои на виниловой основе. Можно предложить еще более простой и распространенный способ: на внутренние стены наносится толстый слой обычной штукатурки на песчано-цементной основе. При этом в ее составе не должны содержаться такие добавки, как известь или домовитая мука. Заметим, что слой такого покрытия толщиной от 2 до 2,5 сантиметров позволяет сократить парапроницаемость от 10 до 12 раз. Как показывает практика, этого вполне достаточно.

Отдельно расскажем о способе, позволяющим уменьшить уровень паропроницаемости до 25 раз. Для этого, в первую очередь, необходимо прогрунтовать газобетонную поверхность не менее трех-четырех раз. Грунтовка должна быть специального состава, предназначенного для обработки газобетона. Как правило, ее расход будет около 1,2-1,5 килограммов на квадратный метр. Такая обработка позволяет уменьшить уровень паропроницаемости примерно в шесть раз. Перед тем, как разводить штукатурку на гипсовой основе, в воду необходимо добавить немного (около 4% от общего объема) такой грунтовки. Это дает дополнительное увеличение пароизоляции еще в пять раз (для слоя толщиной от 8 до 10мм).В результате происходит накопление суммарного эффекта.

Если перед тем, как приступать к штукатурным работам, предварительно обработать поверхность стены специальными адгезивами для газобетонных материалов, то паропронецаемость можно дополнительно снизить как минимум в десять раз. Расход адгезива для обработки поверхности будет около 1-1,5кг на квадратный метр.

Каким материалам следует отдать предпочтение

Если планируется отделка без снижения уровня паропроницаемости, то следует остановить свой выбор на «дышащих» материалах, к таким относятся:
различные виды паропроницаемых шпатлевок и штукатурок.

  • Как правило, это смеси, в которых основным компонентом является гипс;
  • Обои на флизелиновой или бумажной основе;
  • Краски с водно-дисперсионным составом.

Важно! Следует принять во внимание, что кафельная плитка существенно снижает уровень паропроницаемости поверхности газобетонной стены.

В связи с этим, ее укладку лучше ограничить такими помещениями как кухня, ванная комната и туалет. Это ограничение касается только несущих стен и не распространяется на внутренние перегородки

Использование для отделочных работ материалов, снижающих паропроницаемость, сводит на нет основное преимущество газобетонных блоков, благодаря которому они не уступают такому «дышащему» материалу, как дерево. Эта особенность оказывает существенное влияние на создание оптимального микроклимата, поскольку углекислый газ и пар через стены выводятся наружу, и, в тоже время, ничего не мешает поступать внутрь насыщенному кислородом свежему воздуху.

15.02.2016

Паропроницаемость пенополистирола • dpan.by

Паропроницаемость стен и материалов

Существует легенда о «дышащей стене», и былинные сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле, — все это сказки. Паропроницаемость стены небольшая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.
Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.
Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление паропроницанию составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительнных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Что бы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.
Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.
Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляции материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам. Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ∞, ∞
Металлы ∞, ∞
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ∞, ∞
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50
Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *