Ферма (конструкция) Википедия
Ферма ж/д моста, используемая в конструкции антенны АДУ-1000. Ферменный мост для пешеходов, однопутной железной дороги и поддержки трубопровода. Египетский корабль с верёвочной фермой, самым старым известным использованием стропил. Фермы не употреблялись до римской эпохи.Фе́рма (фр. ferme, от лат. firmus ‘прочный’) — стержневая система в строительной механике, остающаяся геометрически неизменяемой после замены её жёстких узлов шарнирными. В элементах фермы, при отсутствии расцентровки стержней и внеузловой нагрузки, возникают только усилия растяжения-сжатия. Фермы образуются из прямолинейных стержней, соединённых в узлах[1] в геометрически неизменяемую систему, к которой нагрузка прикладывается только в узлах
К фермам с оговоркой можно отнести шпренгельные балки, представляющие собой комбинацию двух- или трёхпролётной неразрезной балки и подпружной тяги; они характерны для стальных и деревянных конструкций, с верхним поясом из неразрезного прокатного профиля (пиленые брусья или пакеты клееных досок). Также могут быть шпренгельные железобетонные фермы небольших пролётов.
Этимология
Слово «ферма» происходит от фр. ferme, которое в свою очередь восходит к лат. firmus (прочный).
Англоязычный эквивалент (англ. truss) происходит от старого французского слова фр. trousse, примерно от 1200 года н. э., что означает «вещи, собранные вместе»[3][4]
Область применения
Схема несущего кузова автомобиля. Роль элементов фермы играют приваренные к оболочке кузова усилители и выштамповки на ней.Фермы широко используются в современном строительстве, в основном для перекрытия больших пролётов с целью уменьшения расхода применяемых материалов и облегчения конструкций, например — в строительных большепролётных конструкциях, типа мостов, стропильных систем промышленных зданий, спортивных сооружений, а также при возведении небольших лёгких строительных и декоративных конструкций: павильонов, сценических конструкций, тентов и подиумов;
Фюзеляж самолёта, корпус корабля, несущий кузов автомобиля (кроме открытых кузовов, работающих как простая балка), автобуса или тепловоза, вагонная рама со шпренгелем — с точки зрения сопромата являются фермами (даже если у них отсутствует как таковой каркас — ферменную конструкцию в этом случае образуют подкрепляющие обшивку выштамповки и усилители), соответственно, в их расчётах на прочность применяются соответствующие методики
История
Ферма (конструкция) — Вики
Ферма ж/д моста, используемая в конструкции антенны АДУ-1000. Ферменный мост для пешеходов, однопутной железной дороги и поддержки трубопровода. Египетский корабль с верёвочной фермой, самым старым известным использованием стропил. Фермы не употреблялись до римской эпохи.К фермам с оговоркой можно отнести шпренгельные балки, представляющие собой комбинацию двух- или трёхпролётной неразрезной балки и подпружной тяги; они характерны для стальных и деревянных конструкций, с верхним поясом из неразрезного прокатного профиля (пиленые брусья или пакеты клееных досок). Также могут быть шпренгельные железобетонные фермы небольших пролётов.
Этимология
Слово «ферма» происходит от фр. ferme, которое в свою очередь восходит к лат. firmus (прочный).
Англоязычный эквивалент (англ. truss) происходит от старого французского слова фр. trousse, примерно от 1200 года н. э., что означает «вещи, собранные вместе»[3][4]. Термин truss (ферма) часто используется для описания любой сборки элементов — таких, как псевдо-рамы[5][6] или пары стропил[7][8], часто означает инженерный смысл: «плоская рама из отдельных конструктивных элементов, соединённых концами в треугольники, для охвата большого расстояния»
Область применения
Схема несущего кузова автомобиля. Роль элементов фермы играют приваренные к оболочке кузова усилители и выштамповки на ней.Фермы широко используются в современном строительстве, в основном для перекрытия больших пролётов с целью уменьшения расхода применяемых материалов и облегчения конструкций, например — в строительных большепролётных конструкциях, типа мостов, стропильных систем промышленных зданий, спортивных сооружений, а также при возведении небольших лёгких строительных и декоративных конструкций: павильонов, сценических конструкций, тентов и подиумов;
Фюзеляж самолёта, корпус корабля, несущий кузов автомобиля (кроме открытых кузовов, работающих как простая балка), автобуса или тепловоза, вагонная рама со шпренгелем — с точки зрения сопромата являются фермами (даже если у них отсутствует как таковой каркас — ферменную конструкцию в этом случае образуют подкрепляющие обшивку выштамповки и усилители), соответственно, в их расчётах на прочность применяются соответствующие методики[10].
История
В 1844 году Д. И. Журавский начал изучать свойства мостов с решётчатыми фермами системы Гау по поручению П. П. Мельникова[11], а в 1856 году разработал свою теорию расчёта раскосных ферм и первый указал на существование скалывающих напряжений при изгибе.
В 1893 году
Фермы. Классификация ферм. Компоновка ферм. Элементы ферм. Типы сечений стержней легких и тяжелых ферм
Фермой называется геометрически неизменяемая решетчатая конструкция, работающая на изгиб, элементы которой шарнирно соединены в узлах и работают на осевое растяжение или сжатие при узловом нагружении.
Допущение об идеальной шарнирности узлов противоречит действительной конструкции фермы, но довольно точно отражают фактическую работу ее элементов.
Расчет фермы по шарнирной схеме допускается, когда отношение высоты сечения к длине элемента не превышает 1/10 в конструкциях, эксплуатируемых при t ≥ -40°С, и 1/15 при t < -40°C.
Фермы по сравнению с балками более экономичны по затрате металла.
Область применения ферм весьма обширна. Они используются в покрытиях зданий и сооружений для поддержания кровли (стропильные фермы), радио- и телебашнях, опорах линий электропередач, конструкциях пролетных строений мостов, подъемных кранов и т.д.
Классификация ферм
Фермы состоят из верхнего и нижнего поясов, соединенных между собой решеткой из раскосов и стоек. Расстояние между узлами решетки фермы называется панелью; расстояние между ее опорами – пролетом. Фасонка – деталь фермы, выполненная из листа для соединения стержней фермы в узле.
Разнообразие областей применения и конструктивных решений ферм позволяет классифицировать их по различным признакам:
по назначению– фермы мостов, покрытий (стропильные и подстропильные), транспортных эстакад, грузоподъемных кранов, гидротехнических затворов и других сооружений.
по очертанию поясов:
— с параллельными поясами
-трапециидальная
— арочные
-треугольные
— с треугольной решеткой
— с треугольной решеткой и дополнительными стойками
— с раскосной решеткой.
Очертание поясов зависит главным образом от назначения фермы и принятой конструктивной схемы сооружения по системе решетки:
Решетки специальных типов:
— со шпренгельной решеткой
— крестовая
— ромбическая
— полураскосная.
Система решетки зависит от схемы приложения нагрузки и специальных требований к ферме. Наиболее проста треугольная решетка. Дополнительные стойки ставят в тех случаях, когда в месте их расположения прикладываются сосредоточенные силы или когда хотят уменьшить длину панели верхнего сжатого пояса.
Особенностью раскосной решетки является то, что все раскосы имеют усилия одного знака, а стойки – противоположного; при восходящем направлении раскосов стойки растянуты, а при нисходящем – сжаты.
Шпренгельная решетка применяется при более частом приложении сосредоточенных сил к верхнему поясу.
Фермы с крестовой решеткой применяются обычно при двусторонней нагрузке. Крестовые раскосы проектируют их гибких элементов или тяжей; они воспринимают только растягивающие усилия, а при сжатии выключаются из работы. Благодаря этому фермы с крестовой решеткой рассчитываются как статически определимые системы.
Ромбическая и полураскосная решетка обладают повышенной жесткостью и применяются в конструкциях с большими поперечными силами
— по виду статической схемы – фермы разрезные, неразрезные, консольные.
— по значению наибольших усилий в элементах фермы
легкие – пролетом l до 50 м и с усилием в поясах Nmax ≤ 5000 кн,
тяжелые – с усилием в поясах Nmax > 5000 кн,
по конструктивному решению – обычные, комбинированные и с предварительным напряжением.
Компоновка ферм
В задачу компоновки фермы входят определение ее рациональной схемы с учетом ряда требований: экономичности по затрате металла, простоты изготовления, транспортабельности, требований унификации и типизации. Эти требования часто противоречат между собой, поэтому нужно найти оптимальное решение, наилучшим образом удовлетворяющее одновременно комплексу требований.
Масса фермы зависит от отношения ее высоты к пролету. Усилия в поясах фермы возникают главным образом от изгибающего момента, а в решетке – от поперечной силы.
Чем больше высота фермы, тем меньше усилия в поясах и их масса, но с увеличением высоты фермы увеличивается длина элементов решетки и ее масса. Условно минимального расхода металла отвечает равенство массы поясов и массы решетки вместе с фасонками, что достигается при h≈1/5 L (в балке масса поясов приблизительно равна массе стенки).
Столь большая высота неудобна при транспортировке. Ферму пришлось бы доставлять на строительную площадку отдельными элементами (россыпью) и собирать на месте монтажа.
Дополнительные затраты времени и средств при этом не окупаются экономией металла.
На практике стремятся к тому, чтобы при монтаже производилась только укрупнительная сборка фермы их двух половин (отправочных марок). Поэтому размеры фермы не должны выходить за пределы железнодорожного габарита (по вертикали 3,8 м, по горизонтали -3,2 м). Наиболее удобными в изготовлении являются фермы с параллельными поясами. Одинаковые длины стержней поясов и решетки, одинаковое решение промежуточных узлов и минимальное количество поясных стыков создают условия для максимально возможной унификации конструктивных схем и делают такие фермы индустриальными. Благодаря преимуществам в изготовлении фермы с параллельными поясами постепенно вытесняют фермы трапецеидального очертания.
При компоновке фермы одновременно с выбором системы решетки устанавливают размеры панелей фермы, размеры которых должны отвечать оптимальному углу наклона раскосов. Из конструктивных соображений – рационального очертания фасонки в узле и удобства крепления раскосов – желателен угол, близкий к 45°.
Посредством унификации геометрических схем ферм и типизации конструктивной формы можно стандартизировать конструктивные детали ферм и перейти на массовое их изготовление с помощью специализированных станков и приспособлений.
В настоящее время унифицированы геометрические схемы стропильных ферм производственных зданий (18, 24, 30, 36 м), мостов, радиомачт, радиобашен, опор ЛЭП.
В основу унификации стропильных ферм с рулонной кровлей положены модуль пролета производственных зданий и панель m=3 м, уклон кровли i=1,5 %, высота ферм на опоре 3150 мм по наружным краям поясов, треугольная решетка с возможностью добавления шпренгеля при кровельных плитах шириной 1,5 м.
В фермах больших пролетов (более 36 м), а также в фермах из алюминиевых сплавов или из высокопрочных сталей возникают большие прогибы.
Провисание ферм предотвращается устройством строительного подъема, т.е. изготовлением ферм с обратным выгибом, который под действием нагрузки погашается, в результате чего ферма принимает проектное положение.
Расчет ферм. Определение нагрузок. Определение усилий в стержнях фермы. Расчетные длины стержней ферм. Обеспечение общей устойчивости ферм в системе покрытия. Выбор типа сечения стержней.
Расчет ферм выполняют в такой последовательности:
1) определяют нагрузку на ферму;
2) вычисляют узловые нагрузки;
3) определяют расчетные усилия в стержнях фермы методом строительной механики;
4) подбирают сечения стержней;
5) рассчитывают соединения стержней, узлы и детали.
Ферменные конструкции МКС — Википедия
Схема МКС на июнь 2008 года. В настоящее время все фермы собраныФерменные конструкции — это одна из новых технологий, использованных НАСА при строительстве Международной космической станции. Фермы, доставляемые на орбиту шаттлом, монтируются его экипажем и служат для негерметичного хранения грузов, установки радиаторов, солнечных батарей, различного оборудования. Ферменные конструкции на МКС образуют так называемую ITS (англ. Integrated Truss Structure, Объединённая ферменная структура).
Широкое использование ферменных конструкций при космическом строительстве было запланировано в первоначальном американском проекте станции «Фридом» (англ. Freedom), который позднее, объединившись с российским проектом «Мир-2» и европейским «Колумб» (англ. Columbus), стал основой будущей международной станции. Согласно ранним планам НАСА, на орбиту должны были выводится детали металлоконструкций, из которых астронавты должны были бы собирать сами фермы, прямо в открытом космосе. Однако несмотря на определённые выгоды такого решения, для того чтобы удержать проект МКС во временных рамках в условиях нестабильного финансирования и снизить вероятность нештатных ситуаций, было принято решение доставлять на орбиту предварительно собранные элементы ферменных конструкций, которые бы легко монтировались экипажем шаттла.
Z1[править | править код]
Фотография элемента «Z1» (вверху) и модуля «Юнити» (внизу) с борта шаттла «Дискавери» в ходе миссии STS-92 в октябре 2000 года.«Z1» (англ. Z1 Truss) — ферменная конструкция на зенитном порту модуля Юнити, смонтированная экипажем шаттла «Дискавери» в ходе сборочной миссии МКС 3A (миссия шаттла STS-92), сейчас не являющаяся основным элементом ITS, и служившая на ранних этапах сборки Международной космической станции временной площадкой для размещения фермы «P6» и элементом крепления американских солнечных батарей, установленных на модуле «Юнити» во время полёта шаттла «Индевор» (STS-97), для обеспечения энергетических потребностей станции.
Конструкция фермы включает два плазменных разрядника, снимающих электростатический заряд, возникающий от трения станции об атмосферу, два модуля преобразователей постоянного тока, четыре гироскопа CMG (Control Moment Gyro), служащих для стабилизации станции, часть линии коммуникационной системы S-диапазона, коммуникационную систему Ku-диапазона, первичный и вторичный распределители энергии, оборудование системы термического контроля, механическое крепление для дальнейшего развития ITS, и роботизированное оборудование для выполнения внекорабельной деятельности.
Коммуникационная система S-диапазона ITS состоит из двух избыточных линий, каждая из которых содержит по три заменяемых на орбите модуля и по две антенны, а также сигнальный процессор основного диапазона, транспондер системы слежения и ретрансляции данных и ещё одну группу антенн радиодиапазона, состоящую из двух направленных антенн с малым и высоким усилением.
P6[править | править код]
«P6» (англ. P6 Truss) — вторая ферменная конструкция запущенная к МКС после «Z1». представляет собой энергетический модуль с двумя солнечными батареями, длиной 36,58 метра каждая. Кроме этого внутри фермы смонтировано различное электротехническое и электронное оборудование, необходимое для преобразования, распределения и передачи полученной электроэнергии. «P6» была доставлена на станцию шаттлом «Индевор» (сборочная миссия МКС 4А, миссия шаттла STS-97) и 3 декабря 2000 года была установлена во временную позицию на ферме «Z1». Установка этой конструкции стала важным этапом для энергообеспечения научной программы станции и функционирования американского сегмента. В дальнейшем ферму «P6» предполагается перенести на постоянную позицию в левой части ITS.
S0[править | править код]
«S0» (англ. S0 Truss, полное название Center Integrated Truss Assembly (ITS) Starbord 0 (S-Zero) Truss) — ферменная конструкция длиной 13,4 метров и шириной 4,6 метра. Ферма весит 13,971 килограмм и в настоящее время служит центральной конструкционной основой ITS. Она была присоединена к лабораторному модулю «Дестини» в ходе сборочной миссии МКС 8A (миссия шаттла STS-110) 11 апреля 2002 года. Кроме своего структурного предназначения, как основного конструктивного элемента ITS, ферма «S0» также выполняет соединительную функцию между герметичными модулями МКС и внешними устройствами расположенными на ITS. Через кабели и трубопроводы размещённые на «S0» передаётся электроэнергия, данные, видеосигнал, а также аммиак для активной системы температурного контроля (Active Thermal Control System). Ферма также служит креплением для различного электронного оборудования, такого как устройства переключения основной шины, четыре преобразователя напряжения постоянного тока и четыре сборки распределителей вторичной энергии. Кроме этого на ферме смонтированы четыре антенны спутниковой навигации GPS и два гироскопа.
Тыльную сторону (со стороны американского сегмента станции) ферменной конструкции «S0» занимает 6,4-метровая панель радиатора, который рассеивает тепло выделяемое контейнерами с электроникой. На лицевой стороне «S0» и ещё десяти ферм размещены рельсы для Mobile Transporter — подвижной тележки, перемещающей главную «руку» станции, канадский манипулятор «Канадарм-2», вдоль всей длины Объединённой ферменной структуры (ITS).
Габариты: 13,4 x 4,6 метра (44 x 15 фута)
Масса: 13971 кг (30800 фунтов)
S1[править | править код]
Ферма «S1» смонтированная с правой стороны МКС (Видна рельсовая тележка и манипулятор «Канадарм-2»).«S1» (англ. S1 Truss, полное название Starboard Side Thermal Radiator Truss) — ферменная конструкция присоединённая к правому борту фермы «S0» 10 октября 2002 года (шаттл «Атлантис», сборочная миссия МКС 9A, миссия шаттла STS-112). На ферме размещены рельсовые пути для тележки «Канадарма-2» и робокара (Crew and Equipment Translation Aid cart), предназначенного для перемещения экипажа и оборудования в ходе внекорабельной деятельности. Кроме этого в конструкции размещены радиаторы и другое оборудование для активной системы температурного контроля ATCS, в контурах охлаждения используется аммиак. Роторная радиаторная стойка поворачивает три радиатора на угол 105°, чтобы обеспечивать их постоянное нахождение в тени, а также подводит к ним электроэнергию и аммиак. На ферме размещены камеры и осветительные приборы, оборудование и антенны для системы связи S-диапазона.
Габариты: 13,7 x 4,6 x 1,8 метра (45 x 15 x 6 фута)
Масса: 14124 кг (31137 фунтов)
P1[править | править код]
«P1» (англ. P1 Truss, полное название Port Side Thermal Radiator Truss) — ферменная конструкция размещённая на левом борту центрального сегмента «S0». По своему устройству и предназначению является почти зеркальной копией фермы «S1». Смонтирована 26 ноября 2002 года экипажем шаттла «Индевор» (сборочная миссия МКС 11А, миссия шаттла STS-113). Кроме оборудования для связи в S-диапазоне, на «P1» размещена ещё и коммуникационная система в диапазоне ультравысоких частот (УВЧ, англ. UHF).
Габариты: 13,7 x 4,6 x 1,8 метра (45 x 15 x 6 фута)
Масса: 14003 кг (30871 фунтов)
P3/P4[править | править код]
Фермы «P3/P4» в ходе подготовки к полёту STS- 115. Хорошо видны цилиндрические контейнеры с солнечными батареями на ферме P4 (справа).«P3/P4» (англ. P3/P4 Trusses) — ферменные конструкции, являющиеся продолжением развития левого сегмента ITS, присоединены к ферме «P1» и выполняют функции аналогичные фермам «S3» и «S4». Масса — 17,5 тонн. Конструкции были запущены 9 сентября 2006 года, на борту шаттла «Атлантис» в первой, после катастрофы «Колумбии», сборочной миссии (STS-115, ISS-12A). Монтаж был произведён с 11 сентября по 12 сентября 2006 года.
P5[править | править код]
«P5» (англ. P5 Truss) — небольшой сегмент, служащий для удлинения фермы «P6», был запущен на борту шаттла «Дискавери» (миссия STS-116) 7 декабря 2006 года и 12 декабря присоединён к ферме «P4», в ходе выхода астронавты также заменили неисправную камеру на сегменте «S1». Его необходимость обусловлена ограничением длины грузового отсека шаттлов и он состоит из самой фермы и кабельно-трубопроводных переходников.
S3/S4[править | править код]
«S3/S4» (англ. S3/S4 Trusses) — ферменные конструкции, являющиеся продолжением развития правого сегмента ITS, присоединены к левой ферме «S1» и служат для размещения двух солнечных батарей по 73 метра и 60 киловатт, а также радиатора и системы поворота. Фермы были запущены на борту шаттла «Атлантис», 8 июня 2007 года, в ходе полёта STS-117. 11 июня сегменты были успешно переданы манипулятором шаттла на «Канадарм-2», и подсоединены к ферме «S1». Установку затруднили проблемы с компьютерным оборудованием на российском сегменте станции, предположительно вызванные статическим током, возникшим при подключении нового сегмента.
S5/S6[править | править код]
«S5/S6» (англ. S5/S6 Trusses) — аналоги соответственно ферм «P5/P6», c установкой которых ITS полностью завершена, а энергоснабжение станции значительно увеличено, что позволяет проводить более энергозатратные научные исследования. Ферма «S5» была доставлена на МКС в ходе миссии «Индевор» STS-118. Сегмент, массой 1584 кг был размещён в грузовом отсеке шаттла, вместе с другой полезной нагрузкой. 11 августа 2007 года, в 21:45 (UTC) астронавты Ричард Мастрачио и Давид Уильямс начали монтаж фермы «S5».
15 марта 2009 года стартовала миссия «Дискавери» STS-119 с фермой «S6» на борту.[1] Эта ферма является последним крупным фрагментом МКС, который был поставлен Соединенными Штатами. «S6» имеет длину около 14 метров, масса всей конструкции 16 тонн и её стоимость составляет почти 300 миллионов долларов. 19 марта астронавты Смит Свэнсон и Ричард Арнольд вышли в открытый космос и осуществили монтаж сегмента «S6» ферменной конструкции.[2]
Фермы. Область применения. Классификация. Конструкции ферм.
⇐ ПредыдущаяСтр 12 из 16Следующая ⇒
Фермой называют решетчатую конструкцию из стержней, соединенных между собой в узлах и образующих геометрически неизменяемую конструкцию.
Если нагрузка приложена в узлах, а оси элементов фермы пересекаются в одной точке (центре узла), то жесткость узлов несущественно влияет на работу конструкции и в большинстве случаев их можно рассматривать как шарнирные. Тогда все стержни фермы испытывают только осевые усилия (растяжение или сжатие). Благодаря этому металл в фермах используется более рационально, чем в балках, и они экономичнее балок по расходу материала, но более трудоемки в изготовлении, поскольку имеют большое число деталей. С увеличением перекрываемых пролетов и уменьшением нагрузки эффективность ферм по сравнению со сплошностенчатыми балками растет.
По материалу различают фермы стальные, деревянные, ж/бетонные
Стальные фермы получили широкое распространение во многих областях строительства: в покрытиях и перекрытиях промышленных и гражданских зданий, мостах, опорах линий электропередачи, объектах связи, телевидения и радиовещания (башни, мачты), транспортерных галереях, гидротехнических затворах, грузоподъемных кранах и т.д.
Фермы бывают плоскими и пространственными.
Плоские фермы могут воспринимать нагрузку, приложенную только в их плоскости, и нуждаются в закреплении из своей плоскости связями или другими элементами. Пространственные фермы образуют жесткий пространственный брус, способный воспринимать нагрузку, действующую в любом направлении. Каждая грань такого бруса представляет собой плоскую ферму. Примером пространственного бруса может служить башня или мачта
Основными элементами ферм являются пояса, образующие контур фермы, и решетка, состоящая из раскосов и стоек.
Расстояние между узлами пояса называют панелью (d), расстояние между опорами — пролетом (L), расстояние между осями (или наружными гранями) поясов — высотой фермы (hф).
Соединения элементов в узлах осуществляют путем непосредственного примыкания одних элементов к другим или с помощью узловых фасонок. Для того чтобы стержни ферм работали в основном на осевые усилия, а влиянием моментов можно было пренебречь, элементы ферм следует центрировать по осям.
В зависимости от назначения, архитектурных требований и схемы приложения нагрузок фермы могут иметь самую разнообразную конструктивную форму. Их можно классифицировать по следующим признакам: статической схеме, очертанию поясов, системе решетки, способу соединения элементов в узлах, величине усилия в элементах.
По статической схеме фермы бывают: балочные (разрезные, неразрезные, консольные), арочные, рамные и вантовые.
В покрытиях зданий, мостах, транспортерных галереях и других подобных сооружениях наибольшее применение нашли балочные разрезные системы. Они просты в изготовлении и монтаже, не требуют устройства сложных опорных узлов.
При числе перекрываемых пролетов два и более применяют неразрезные фермы. Они экономичнее по расходу металла и обладают большей жесткостью, что позволяет уменьшить их высоту. Но как во всяких внешне статически неопределимых системах, в неразрезных фермах усложняется монтаж таких конструкций. Консольные фермы используют для навесов, башен, опор воздушных линий электропередач. Рамные системы экономичны по расходу стали, имеют меньшие габариты, однако более сложны при монтаже. Их применение рационально для большепролетных зданий. Применение арочных систем, хотя и дает экономию стали, приводит к увеличению объема помещения и поверхности ограждающих конструкций. Их применение диктуется в основном архитектурными требованиями. В вантовых фермах все стержни работают только на растяжение и могут быть выполнены из гибких элементов, например стальных тросов. Растяжение всех элементов таких ферм достигается выбором очертания поясов и решетки, а также созданием предварительного напряжения. Работа только на растяжение позволяет полностью использовать высокие прочностные свойства стали, поскольку снимаются вопросы устойчивости. Вантовые фермы рациональны для большепролетных перекрытий и в мостах.
В зависимости от очертания поясов фермы подразделяют на треугольные (а,б), арочные (д), полигональные (е), трапецеидальные (в), с параллельными поясами (г).
Очертание поясов ферм в значительной степени определяет их экономичность. Теоретически наиболее экономичной по расходу стали является ферма, очерченная по эпюре моментов. Для однопролетной балочной системы с равномерно распределенной нагрузкой это будет сегментная (арочная) ферма с параболическим поясом (д). Однако криволинейное очертание пояса повышает трудоемкость изготовления, поэтому такие фермы в настоящее время практически не применяют.
Более приемлемым является полигональное очертание с переломом пояса в каждом узле (е). Оно достаточно близко соответствует параболическому очертанию эпюры моментов, не требует изготовления криволинейных элементов. Такие фермы иногда применяют для перекрытия больших пролетов и в мостах, т.е. в конструкциях, поставляемых на строительную площадку «россыпью» (из отдельных элементов). Для ферм покрытий обычных зданий, поставляемых на монтаж, как правило, в виде укрупненных отправочных элементов из-за усложнения изготовления эти фермы в настоящее время не применяют. Вы их можете встретить только в старых сооружениях, построенных до 50-х годов.
Фермы трапецеидального очертания (в) , хотя и не совсем соответствуют эпюре моментов, имеют конструктивные преимущества, прежде всего за счет упрощения узлов. Кроме того, применение таких ферм в покрытии позволяет устроить жесткий рамный узел, что повышает жесткость каркаса.
Фермы с параллельными поясами по своему очертанию далеки от эпюры моментов и по расходу стали не экономичны. Однако равные длины элементов решетки, одинаковая схема узлов, наибольшая повторяемость элементов и деталей и возможность их унификации способствует индустриализации их изготовления. Благодаря этим преимуществам фермы с параллельными поясами стали основными для покрытия зданий.
Фермы треугольного очертания рациональны для консольных систем, а также для балочных систем при сосредоточенной нагрузке в середине пролета (подстропильные фермы).
Системы решетки
Выбор типа решетки зависит от схемы приложения нагрузок, очертания поясов и конструктивных требований. Так, во избежание изгиба пояса места приложения сосредоточенных нагрузок следует подкреплять элементами решетки. Для обеспечения компактности узлов угол между раскосами и поясом желательно иметь в пределах 30…50°.
Для снижения трудоемкости изготовления ферма должна быть по возможности простой с наименьшим числом элементов и дополнительных деталей.
Треугольная система решетки имеет наименьшую суммарную длину элементов и наименьшее число узлов. Различают фермы с восходящими и нисходящими опорными раскосами. Если опорный раскос идет от нижнего опорного узла фермы к верхнему поясу, то его называют восходящим. При направлении раскоса от опорного узла верхнего пояса к нижнему — нисходящим. В местах приложения сосредоточенных нагрузок (например, в местах опирания прогонов кровли) можно установить дополнительные стойки или подвески. Эти стойки служат также для уменьшения расчетной длины пояса. Стойки и подвески работают только на местную нагрузку.
Недостатком треугольной решетки является наличие длинных сжатых раскосов, что требует дополнительного расхода стали для обеспечения их устойчивости.
В раскосной системе решетки все раскосы имеют усилия одного знака, а стойки — другого. Так, в фермах с параллельными поясами при восходящем раскосе стойки растянуты, а раскосы сжаты; при нисходящем — наоборот. Очевидно, при проектировании ферм следует стремиться, чтобы наиболее длинные элементы были растянуты, а сжатие воспринималось короткими элементами. Раскосная решетка более металлоемка и трудоемка по сравнению с треугольной, так как общая длина элементов решетки больше и в ней больше узлов. Применение раскосной решетки целесообразно при малой высоте ферм и больших узловых нагрузках.
Шпренгельную решетку применяют при внеузловом приложении сосредоточенных нагрузок к верхнему поясу, а также при необходимости уменьшения расчетной длины пояса. Она более трудоемка, но в результате исключения работы пояса на изгиб и уменьшения его расчетной длины может обеспечить снижение расхода стали.
Если нагрузка на ферму может действовать как в одном, так и в другом направлении (например, ветровая нагрузка), то целесообразно применение крестовой решетки.
Ромбическая и полураскосная решетки благодаря двум системам раскосов обладают большой жесткостью; эти системы применяют в мостах, башнях, мачтах, связях для уменьшения расчетной длины стержней. Они рациональны при большой высоте ферм и работе конструкций на значительные поперечные силы.
Возможна в одной ферме комбинация различных типов решетки.
По способу соединения элементов в узлах фермы подразделяют на сварные и болтовые. В конструкциях, изготовленных до 50-х годов, применялись также клепаные соединения. Основными типами ферм являются сварные. Болтовые соединения, как правило, на высокопрочных болтах применяют в монтажных узлах.
Железобетонные фермы и некоторые тяжелые стальные фермы могут выполняться без раскосов с жесткими узлами.
Высоту ферм принимают h= (1/5 – 1/4)L, высоту ферм с параллельными поясами и трапецеидальных ферм — h= (1/6 – 1/8)L. Наклон раскосов составляет 350 – 450.
Стальные фермы.
В зависимости от пролета и величины действующей нагрузки условно различают легкие фермы с сечениями элементов из простых прокатных или гнутых профилей (при усилиях в стержнях N<500кН и пролетом до 50 метров) и тяжелые фермы с элементами составного сечения (N >500кН), способные перекрывать пролеты до 100 метров. Легкие стальные фермы разработаны для пролетов 18, 24, 30, 36 метров с унифицированным размером панелей 3 м, высотой 2,25м, 2,4м, 3,15 метра (с учетом габаритов грузов, перевозимых ж/д транспортом).
Пространственную жесткость обеспечивают постановкой горизонтальных и вертикальных связей. Также в обеспечении жесткости участвуют прогоны и плиты перекрытия.
Рекомендуемые страницы:
Вертикальная ферма — Википедия
салат на фермеВертикальное сельское хозяйство — обобщённое название высокоавтоматизированного агропромышленного комплекса, размещенного в специально спроектированном здании, а также название самого здания. Главное отличие вертикального сельского хозяйства от традиционных тепличных хозяйств и животноводческих ферм — это интенсивный подход к использованию территории, вертикальное многоярусное размещение насаждений. Термин и идея принадлежат Диксону Деспомье[1].
По сути, вертикальное сельское хозяйство представляет собой многоярусную теплицу.
Из-за того, что вертикальные комплексы изначально планируются как элемент городской среды, их архитектурной проработке зачастую уделяют большое внимание, но это не всегда так, например, компания SquareRoots разработала вертикальные фермы на базе обычных контейнеров для грузоперевозок.
Предпосылкой для разработки подобных проектов послужил постоянный рост населения планеты, а также влияние климатических факторов, что в обозримом будущем приведёт к нехватке территорий сельскохозяйственного назначения.
Вместо того, чтобы выращивать урожай на залитых солнцем полях или в теплицах, некоторые компании складируют и выращивают его в темных, старых кладовых под ультрафиолетовым светом или полноценным LED освещением — что позволяет им экономить воду и быстрее пожинать плоды. На старой ковровой фабрике на окраине бельгийского города Кортрейк, готовится сельскохозяйственный переворот: выращивать урожай в здании, а не на ферме, собирая его слой за слоем под цветными лампочками в области размером с небольшую квартиру.
Это называется вертикальное сельское хозяйство, и несколько компаний занимаются этим уже около десяти лет, арендуя старые склады и неиспользуемые фабрики и выстраивая на них структуры, которые выращивают овощи и зерновые в тесных, искусственно освещаемых помещениях с теплым солнечным светом.
Одной из таких является фирма Urban Crops. У нее есть большая рама, предназначенная для удерживания подносов с медленно движущимися конвейерными лентами молодых растений под мягко светящимися синими и красными светодиодами, на этой бывшей ковровой фабрике.
Но их система, в основном автоматизированная, все еще находится в стадии разработки. Главный исполнительный директор Мартен Вандекрюс объясняет, что их оборудование позволяет растениям питаться светом и полезными веществами в течение всего их цикла роста. Затем их можно будет собрать, когда настанет время.
Каждый вид культур имеет план роста, адаптированный под его потребности, например, в питательных веществах и свете. Кроме того, здесь растения растут быстрее, чем на открытой ферме.
Urban Crops говорит, что вертикальное сельское хозяйство дает больше урожая на квадратный метр, чем традиционное сельское хозяйство или теплицы. Вертикальное сельское хозяйство также потребляет меньше воды, растения растут быстрее и круглый год — а не только в определенные времена года. Объекты также можно строить, теоретически, в любых местах.
В Urban Crops восемь слоев растений можно сложить в области всего на 30 квадратных метрах. Пока это не полномасштабный коммерческий проект, а проверка, которая должна показать жизнеспособность концепции.
«В принципе, внутри системы, каждый день — это летний день без облачка в небе», говорит Вандекрюс.
Вандекрюс говорит, что внутри можно вырастить практически все, что угодно — но это не всегда хорошая идея. Он объясняет, что экономически выгоднее придерживаться более быстрорастущих культур, которые имеют высокую рыночную стоимость. Травы, зелень для салата и съедобные цветы, например, приносят намного больше за килограмм, чем некоторые корнеплоды, которые, скорее всего, будут выращиваться на открытом воздухе по старинке еще какое-то время.
Выращивая растения в закрытом помещении, вы получаете точный контроль над ресурсами, в которых нуждается ваш урожай. Это позволяет растениям расти предсказуемым и тщательно контролируемым образом. Светодиоды, например, можно включать и выключать по желанию, потому что они не излучают много тепла, как «лампочки Ильича» и их можно приближать к растениям для оптимального потребления света.
Конечно, можно производить то же самое количество овощей и на «свободе», но на это уйдет больше земли и ресурсов.
Итак, как это работает на самом деле? Есть несколько основных моделей закрытого сельского хозяйства, из которых может выбирать вертикальный фермер: гидропоника — когда растения выращиваются в богатом питательными веществами бассейне с водой — и аэропоника — когда корни растений периодически сбрызгиваются туманом, содержащим воду и питательные вещества. В последнем случае используется меньше воды, но возникает больше технических проблем. Есть еще аквапоника, которая немного отличается, потому что включает разведение рыбы, которая помогает культивировать бактерии, которые затем используются для питания растений.
Urban Crops выбрала гидропонику. Вандекрюс отмечает, что они перерабатывают воду несколько раз после того, как она испаряется с растений, и вытягивают ее из влажного воздуха. Ее также обрабатывают ультрафиолетовым светом, чтобы предупредить распространение болезней. [2]
На данный момент можно выделить следующие основные виды вертикальных ферм:
- Фермы, специализирующиеся исключительно на растениеводстве (обычно гидропонным методом, реже аэропонным способом)
- Сельскохозяйственные фермы, занимающиеся растениеводством и животноводством.
Обобщённые характеристики проектов вертикальных ферм[править | править код]
- Полная энергетическая независимость, благодаря использованию солнечной и ветровой энергии;
- системы сбора и очистки воды, переработки СО2 и отходов, очистка и ионизация воздуха в залах выращивания,использование энергии биомассы;
- гибкая конструкция и возможность установки дополнительных модулей; возможность локального производства ( даже в черте города).
- зелёные сады, вертикальные гидропонные и аэропонные участки для выращивания растений и зерновых культур, ягодных культур, бассейны с рыбой, фермы с животными.
На данный момент есть несколько проектов (в основном в виде эскизов — концепций) вертикальных ферм, среди которых можно выделить следующие:
- Вертикальная ферма «Стрекоза» (англ. Dragonfly) бельгийского архитектора Винсента Каллебо (Vincent Callebaut).
- Своё название «Стрекоза» вертикальная ферма — небоскреб получил за форму в виде гигантских крыльев стрекозы, сложенных вместе высотой в 600 метров. Этажность здания — 132 этажа. Предполагается, что здание будет полностью обеспечивать себя энергией за счет солнца и ветра. Место для строительства предусмотрено на острове Рузвельта, практически в центре Нью-Йорка (между Манхэттеном и Лонг-Айлендом).
- Вертикальная ферма «Plantagon», концепт которой был представлен шведско-американской компанией «Plantagon», представляет собой сферический купол, внутри которого размещена спиральная платформа, на которой и происходит выращивание растений.
- Вертикальная ферма Circular Symbiosis Tower, концепт южнокорейских архитекторов.
- В отличие от всех подобных проектов вертикальных ферм, предусматривающих их размещение в городской среде, проект южнокорейских архитекторов «Circular Symbiosis Tower» предусмотрен для создания нового облика сельских поселений. Небоскреб состоит из платформ, расположенных по спирали вокруг несущего ядра здания. На этих платформах планируется разведение кормовых растений и свободный выпас коров. После тридцати дней выпаса крупного рогатого скота он переводится на другой уровень, а на этот запускаются овцы либо другие животные, которые способны употреблять в пищу укороченные части зеленых растений. Проект вертикальной фермы «Circular Symbiosis Tower» является победителем «2011 Skyscraper Competition».
- Высотный дом-ферма «R4 apartment» от сингапурской компании «Surbana International Consultants» также можно отнести к категории высотных ферм. Этот проект получил главный приз «Skyrise Greenery Awards»* 2010, награды, присуждаемой за создание экологичных зданий.
- Вертикальная ферма «ИЛИОТЕК» от российской компании ООО «Агрорус», расположенная в г. Брянск на территории бывшего цеха машиностроительного завода. По последним оценкам, ферма является крупнейшей в России и Европе. Суммарная площадь посевной площади — 3500 квадратных метров, которая располагается на 300 квадратных метрах фактической площади. Также, компания Агрорус активно строит первые фермы на дальнем востоке. Ориентировочный срок ввода в эксплуатацию первой такой фермы — июль 2019. Кроме этого появляются компании проектирующие и создающие промышленные вертикальные фермы такие как: www.agrotechcorp.com, Troysun.